The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches

被引:11
作者
Zhang, Long [1 ]
Tenga, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
predator-prey model; impulsive dispersal; predator-extinction periodic solution; global attractivity; permanence; GLOBAL STABILITY; METAPOPULATION DYNAMICS; POPULATION INTERACTIONS; TIME-DELAY; MODELS; DIFFUSION; ENVIRONMENT; PERMANENCE;
D O I
10.1002/mma.3806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a predator-prey model with Gompertz growth function and impulsive dispersal of prey between two patches. Using the dynamical properties of single-species model with impulsive dispersal in two patches and comparison principle of impulsive differential equations, necessary and sufficient criteria on global attractivity of predator-extinction periodic solution and permanence are established. Finally, a numerical example is given to illustrate the theoretical results. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:3623 / 3639
页数:17
相关论文
共 38 条
  • [1] [Anonymous], 1999, Oxford Series in Ecology and Evolution
  • [2] Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
  • [3] GLOBAL STABILITY AND PERIODIC-ORBITS FOR 2-PATCH PREDATOR-PREY DIFFUSION-DELAY MODELS
    BERETTA, E
    SOLIMANO, F
    TAKEUCHI, Y
    [J]. MATHEMATICAL BIOSCIENCES, 1987, 85 (02) : 153 - 183
  • [4] GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY
    BERETTA, E
    TAKEUCHI, Y
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) : 627 - 651
  • [5] BERETTA E, 1987, B MATH BIOL, V49, P431, DOI 10.1016/S0092-8240(87)80005-8
  • [6] Life-history syndromes: Integrating dispersal through space and time
    Buoro, Mathieu
    Carlson, Stephanie M.
    [J]. ECOLOGY LETTERS, 2014, 17 (06) : 756 - 767
  • [7] MODELING AND ANALYSIS OF A HARVESTING FISHERY MODEL IN A TWO-PATCH ENVIRONMENT
    Cai, Liming
    Li, Xuezhi
    Song, Xinyu
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2008, 1 (03) : 287 - 298
  • [8] Permanence and extinction for dispersal population systems
    Cui, JA
    Takeuchi, Y
    Lin, ZS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) : 73 - 93
  • [9] Davidson FA, 1928, U ILL AGR EXP STA B, V302, P192
  • [10] Stochastic population growth in spatially heterogeneous environments
    Evans, Steven N.
    Ralph, Peter L.
    Schreiber, Sebastian J.
    Sen, Arnab
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 66 (03) : 423 - 476