A Differential Privacy Random Forest Method of Privacy Protection in Cloud

被引:5
|
作者
Lv, Chaoxian [1 ]
Li, Qianmu [1 ]
Long, Huaqiu [2 ]
Ren, Yumei [3 ]
Ling, Fei [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Wuyi Univ, Intelligent Mfg Dept, Jiangmen, Peoples R China
[3] Jiangsu Womens Federation New Media & Network Inf, Nanjing, Jiangsu, Peoples R China
[4] Nanjing Liancheng Technol Dev Co Ltd, Jiangsu Postgrad Workstn, Nanjing, Jiangsu, Peoples R China
来源
2019 22ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (IEEE CSE 2019) AND 17TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (IEEE EUC 2019) | 2019年
关键词
privacy protection; differential privacy; random forest; ALGORITHM; QUERIES;
D O I
10.1109/CSE/EUC.2019.00093
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
this paper proposes a new random forest classification algorithm based on differential privacy protection. In order to reduce the impact of differential privacy protection on the accuracy of random forest classification, a hybrid decision tree algorithm is proposed in this paper. The hybrid decision tree algorithm is applied to the construction of random forest, which balances the privacy and classification accuracy of the random forest algorithm based on differential privacy. Experiment results show that the random forest algorithm based on differential privacy can provide high privacy protection while ensuring high classification performance, achieving a balance between privacy and classification accuracy, and has practical application value.
引用
收藏
页码:470 / 475
页数:6
相关论文
共 50 条
  • [11] Information entropy differential privacy: A differential privacy protection data method based on rough set theory
    Li, Xianxian
    Luo, Chunfeng
    Liu, Peng
    Wang, Li-E
    IEEE 17TH INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP / IEEE 17TH INT CONF ON PERVAS INTELLIGENCE AND COMP / IEEE 5TH INT CONF ON CLOUD AND BIG DATA COMP / IEEE 4TH CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2019, : 918 - 923
  • [12] Differential Privacy Data Protection Method Based on Clustering
    Li Li-xin
    Ding Yong-shan
    Wang Jia-yan
    2017 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY (CYBERC), 2017, : 11 - 16
  • [13] Face Recognition Model Based on Privacy Protection and Random Forest Algorithm
    Zhang, JianWu
    Shen, Wei
    Liu, LiFeng
    Wu, ZhenDong
    2018 27TH WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC), 2018, : 101 - 105
  • [14] A New Method of Privacy Protection: Random k-Anonymous
    Song, Fagen
    Ma, Tinghuai
    Tian, Yuan
    Al-Rodhaan, Mznah
    IEEE ACCESS, 2019, 7 : 75434 - 75445
  • [15] Location privacy protection method based on differential privacy in crowdsensing task allocation
    Zhang, Qiong
    Wang, Taochun
    Tao, Yuan
    Xu, Nuo
    Chen, Fulong
    Xie, Dong
    AD HOC NETWORKS, 2024, 158
  • [16] Group Coding Location Privacy Protection Method Based on Differential Privacy in Crowdsensing
    Wang, Taochun
    Tao, Yuan
    Zhang, Qiong
    Xu, Nuo
    Chen, Fulong
    Zhao, Chuanxin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28398 - 28408
  • [17] Privacy Protection in Cloud Storage
    Zhang Jianhua
    Zhang Nan
    Fu Chunchang
    RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 55-57 : 504 - 507
  • [18] A Differential Privacy Budget Allocation Algorithm Based on Out-of-Bag Estimation in Random Forest
    Li, Xin
    Qin, Baodong
    Luo, Yiyuan
    Zheng, Dong
    MATHEMATICS, 2022, 10 (22)
  • [19] Location privacy protection method based on random mesh
    Yang S.
    Wang H.
    Ma C.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2018, 40 (02): : 422 - 426
  • [20] A location privacy protection algorithm based on differential privacy in sensor network
    Kou, Kaiqiang
    Liu, Zhaobin
    Ye, Hong
    Li, Zhiyang
    Liu, Weijiang
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2021, 14 (05) : 432 - 442