Reconstruction of normal forms by learning informed observation geometries from data

被引:40
作者
Yair, Or [1 ]
Talmon, Ronen [1 ]
Coifman, Ronald R. [2 ]
Kevrekidis, Ioannis G. [3 ,4 ]
机构
[1] Technion Israel Inst Technol, Viterbi Fac Elect Engn, IL-32000 Haifa, Israel
[2] Yale Univ, Dept Math, New Haven, CT 06511 USA
[3] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[4] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 以色列科学基金会;
关键词
dynamical systems; geometry; graph theory; data analysis; empirical models; DIMENSIONALITY REDUCTION; TENSOR DECOMPOSITIONS; COMPONENT ANALYSIS; SYSTEMS; EIGENMAPS; DYNAMICS;
D O I
10.1073/pnas.1620045114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The discovery of physical laws consistent with empirical observations is at the heart of (applied) science and engineering. These laws typically take the form of nonlinear differential equations depending on parameters; dynamical systems theory provides, through the appropriate normal forms, an "intrinsic" prototypical characterization of the types of dynamical regimes accessible to a given model. Using an implementation of data-informed geometry learning, we directly reconstruct the relevant "normal forms": a quantitative mapping from empirical observations to prototypical realizations of the underlying dynamics. Interestingly, the state variables and the parameters of these realizations are inferred from the empirical observations; without prior knowledge or understanding, they parametrize the dynamics intrinsically without explicit reference to fundamental physical quantities.
引用
收藏
页码:E7865 / E7874
页数:10
相关论文
共 48 条
[1]  
Anandkumar A, 2014, J MACH LEARN RES, V15, P2773
[2]  
Ankenman J. I., 2014, THESIS YALE U
[3]  
[Anonymous], 2013, NONLINEAR OSCILLATIO
[4]  
[Anonymous], 2008, Computer Vision and Pattern Recognition
[5]  
[Anonymous], THESIS
[6]  
[Anonymous], 1963, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, DOI DOI 10.1137/0301010
[7]  
[Anonymous], 2003, COMMUN MATH SCI, DOI DOI 10.4310/CMS.2003.V1.N4.A5
[8]  
[Anonymous], 2001, Perceptual metrics for image database navigation, DOI [10.1007/978-1-4757-3343-3_2, DOI 10.1007/978-1-4757-3343-3_2]
[9]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[10]   Automated reverse engineering of nonlinear dynamical systems [J].
Bongard, Josh ;
Lipson, Hod .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (24) :9943-9948