A point-of-interest suggestion algorithm in Multi-source geo-social networks

被引:22
|
作者
Xiong, Xi [1 ,4 ]
Qiao, Shaojie [2 ]
Li, Yuanyuan [3 ]
Han, Nan [5 ,6 ]
Yuan, Guan [7 ]
Zhang, Yongqing [8 ]
机构
[1] Chengdu Univ Informat Technol, Sch Cybersecur, Chengdu 610225, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Software Engn, Chengdu 610225, Peoples R China
[3] Sichuan Univ, Mental Hlth Ctr, West China Hosp, Chengdu 610041, Peoples R China
[4] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China
[5] Chengdu Univ Informat Technol, Sch Management, Chengdu 610103, Peoples R China
[6] Guangdong Prov Engn Ctr China Made High Performan, Guangdong Prov Key Lab Popular High Performance C, Guangzhou 518060, Peoples R China
[7] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[8] Chengdu Univ Informat Technol, Sch Comp Sci, Chengdu 610225, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Location-based social networks; POI suggestion; Geo-social networks; Probabilistic graphical model; Gibbs sampling; MODEL;
D O I
10.1016/j.engappai.2019.103374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Newly emerging location-based social network (LBSN) services provide us with new platforms to share interests and individual experience based on their activity history. The problems of data sparsity and user distrust in LBSNs create a severe challenge for traditional recommender systems. Moreover, users' behaviors in LBSNs show an obvious spatio-temporal pattern. Valuable extra information from microblog-based social networks (MBSNs) can be utilized to improve the effectiveness of POI suggestion. In this study, we propose a latent probabilistic generative model called MTAS, which can accurately capture the underlying information in users' words extracted from both LBSNs and MBSNs by taking into consideration the decision probability, a latent variable indicating a user's tendency to publish a review in LBSNs or MBSNs. Then, the parameters of the MTAS model can be inferred by the Gibbs sampling method in an effective manner. Based on MTAS, we design an effective framework to fulfill the top-k suggestion. Extensive experiments on two real geo-social networks show that MTAS achieves better performance than existing state-of-the-art methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Point-of-Interest Recommendation in LocationBased Social Networks with Personalized Geo-Social Influence
    HUANG Liwei
    MA Yutao
    LIU Yanbo
    中国通信, 2015, 12 (12) : 21 - 31
  • [2] Point-of-Interest Recommendation in Location-Based Social Networks with Personalized Geo-Social Influence
    Huang Liwei
    Ma Yutao
    Liu Yanbo
    CHINA COMMUNICATIONS, 2015, 12 (12) : 21 - 31
  • [3] Deep Potential Geo-Social Relationship Mining for Point-of-Interest Recommendation
    Pan, Zhenggao
    Cui, Lin
    Wu, Xiaoyin
    Zhang, Zhiwei
    Li, Xianwei
    Chen, Guolong
    IEEE ACCESS, 2019, 7 : 99496 - 99507
  • [4] Discovering Point-of-Interest Signatures based on Group Features from Geo-Social Networking Data
    Wei, Ling-Yin
    Yeh, Mi-Yen
    Lin, Grace
    Chan, Ya Hui
    Lai, Wei Jung
    2013 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2013, : 182 - 187
  • [5] Where to go: An effective point-of-interest recommendation framework for heterogeneous social networks
    Xiong, Xi
    Qiao, Shaojie
    Han, Nan
    Xiong, Fei
    Bu, Zhan
    Li, Rong-Hua
    Yue, Kun
    Yuan, Guan
    NEUROCOMPUTING, 2020, 373 : 56 - 69
  • [6] A new point-of-interest group recommendation method in location-based social networks
    Zhao, Xiangguo
    Zhang, Zhen
    Bi, Xin
    Sun, Yongjiao
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (18) : 12945 - 12956
  • [7] EXPLORING GEO-SOCIAL NETWORKS FOR URBAN STUDIES
    Ercoskun, Ozge Yalciner
    SGEM 2015, BOOK 4: ARTS, PERFORMING ARTS, ARCHITECTURE AND DESIGN, 2015, : 385 - 392
  • [8] Towards Location Privacy Awareness on Geo-Social Networks
    Alrayes, Fatma
    Abdelmoty, Alia
    2016 10TH INTERNATIONAL CONFERENCE ON NEXT GENERATION MOBILE APPLICATIONS, SECURITY AND TECHNOLOGIES (NGMAST), 2016, : 105 - 114
  • [9] A Unified Point-of-Interest Recommendation Framework in Location-Based Social Networks
    Cheng, Chen
    Yang, Haiqin
    King, Irwin
    Lyu, Michael R.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 8 (01)
  • [10] Point-of-interest Recommendation for Location Promotion in Location-based Social Networks
    Yu, Fei
    Li, Zhijun
    Jiang, Shouxu
    Lin, Shirong
    2017 18TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (IEEE MDM 2017), 2017, : 344 - 347