COEXISTENCE OF STEADY STATE FOR A DIFFUSIVE PREY-PREDATOR MODEL WITH HARVESTING

被引:0
作者
Li, Yan [1 ,2 ]
机构
[1] China Univ Petr, Dept Math, Qingdao 266580, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Michaelis-Menten type prey harvesting; coexistence solutions; upper and lower solutions method; degree theory; bifurcation theory; POSITIVE SOLUTIONS; STABILITY; MULTIPLICITY; BIFURCATION; UNIQUENESS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a diffusive prey-predator model with modified Leslie-Gower term and Michaelis-Menten type prey harvesting, subject to homogeneous Dirichlet boundary conditions. Treating the prey harvesting parameter as a bifurcation parameter, we obtain the existence, bifurcation and stability of coexistence steady state solutions. We use the method of upper and lower solutions, degree theory in cones, and bifurcation theory. The conclusions show the importance of prey harvesting in the model.
引用
收藏
页数:15
相关论文
共 50 条