Experimental Passive-State Preparation for Continuous-Variable Quantum Communications

被引:36
作者
Qi, Bing [1 ,2 ]
Gunther, Hyrum [3 ]
Evans, Philip G. [1 ]
Williams, Brian P. [1 ]
Camacho, Ryan M. [3 ]
Peters, Nicholas A. [1 ,4 ]
机构
[1] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[3] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
[4] Univ Tennessee, Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
关键词
KEY DISTRIBUTION; NONDEMOLITION MEASUREMENTS; PHOTON STATISTICS; CRYPTOGRAPHY; SECURITY;
D O I
10.1103/PhysRevApplied.13.054065
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the Gaussian-modulated coherent state quantum key distribution (QKD) protocol, the sender first generates Gaussian-distributed random numbers and then encodes them on weak laser pulses actively by performing amplitude and phase modulations. Recently, an equivalent passive QKD scheme has been proposed by exploring the intrinsic field fluctuations of a thermal source [B. Qi, P. G. Evans, and W. P. Grice, Phys. Rev. A 97, 012317 (2018)]. This passive QKD scheme is especially appealing for chip-scale implementation since no active modulation is required. In this paper, we conduct an experimental study of the passively encoded QKD scheme using an off-the-shelf amplified spontaneous emission source operated in continuous-wave mode. Our results show that the excess noise introduced by the passive state preparation scheme can be effectively suppressed by applying optical attenuation and a secure key can be generated over metro-area distances.
引用
收藏
页数:11
相关论文
共 44 条
  • [1] Passive-state preparation in continuous-variable measurement-device-independent quantum key distribution
    Bai, Dongyun
    Huang, Peng
    Ma, Hongxin
    Wang, Tao
    Zeng, Guihua
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (13)
  • [2] BENNETT C. H., 1984, PROC IEEE INT C COMP, V175, P8, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Free-Space Quantum Signatures Using Heterodyne Measurements
    Croal, Callum
    Peuntinger, Christian
    Heim, Bettina
    Khan, Imran
    Marquardt, Christoph
    Leuchs, Gerd
    Wallden, Petros
    Andersson, Erika
    Korolkova, Natalia
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (10)
  • [4] Practical challenges in quantum key distribution
    Diamanti, Eleni
    Lo, Hoi-Kwong
    Qi, Bing
    Yuan, Zhiliang
    [J]. NPJ QUANTUM INFORMATION, 2016, 2
  • [5] Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations
    Diamanti, Eleni
    Leverrier, Anthony
    [J]. ENTROPY, 2015, 17 (09) : 6072 - 6092
  • [6] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [7] Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels
    Eriksson, Tobias A.
    Hirano, Takuya
    Puttnam, Benjamin J.
    Rademacher, Georg
    Luis, Ruben S.
    Fujiwara, Mikio
    Namiki, Ryo
    Awaji, Yoshinari
    Takeoka, Masahiro
    Wada, Naoya
    Sasaki, Masahide
    [J]. COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [8] Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers
    Fossier, S.
    Diamanti, E.
    Debuisschert, T.
    Tualle-Brouri, R.
    Grangier, P.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (11)
  • [9] Quantum cryptography
    Gisin, N
    Ribordy, GG
    Tittel, W
    Zbinden, H
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 145 - 195
  • [10] Quantum non-demolition measurements in optics
    Grangier, P
    Levenson, JA
    Poizat, JP
    [J]. NATURE, 1998, 396 (6711) : 537 - 542