Quantum physics and signal processing in rigged Hilbert spaces by means of special functions, Lie algebras and Fourier and Fourier-like transforms

被引:6
作者
Celeghini, E. [1 ,2 ]
del Olmo, M. A. [2 ]
机构
[1] Univ Florence, Dipartmento Fis, I-50019 Florence, Italy
[2] Univ Valladolid, Dept Fis Teor, E-47005 Valladolid, Spain
来源
XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30) | 2015年 / 597卷
关键词
FACTORIZATION; POLYNOMIALS;
D O I
10.1088/1742-6596/597/1/012022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum physics and signal processing in the line R are strictly related to Fourier transform and Weyl-Heisenberg algebra. We discuss here the addition of a new discrete variable that measures the degree of the Hermite functions and allows to obtain the projective algebra io(2). A rigged Hilbert space is found and a new discrete basis in R obtained. All operators defined on R are shown to belong to the universal enveloping algebra of io(2) allowing, in this way, their algebraic treatment. Introducing in the half-line a Fourier-like transform, the procedure is extended to R+ and can be easily generalized to R and to spherical cohordinate systems.
引用
收藏
页数:10
相关论文
共 11 条
  • [1] [Anonymous], 1995, A primer of algebraic D-modules
  • [2] The factorization method for the Askey-Wilson polynomials
    Bangerezako, G
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (02) : 219 - 232
  • [3] ON UNITARY RAY REPRESENTATIONS OF CONTINUOUS GROUPS
    BARGMANN, V
    [J]. ANNALS OF MATHEMATICS, 1954, 59 (01) : 1 - 46
  • [4] Bohm A., 1978, The Rigged Hilbert Space and Quantum Mechanics: Lectures in Mathematical Physics at the University of Texas at Austin
  • [5] Coherent orthogonal polynomials
    Celeghini, E.
    del Olmo, M. A.
    [J]. ANNALS OF PHYSICS, 2013, 335 : 78 - 85
  • [6] CONTRACTIONS OF GROUP-REPRESENTATIONS .2.
    CELEGHINI, E
    TARLINI, M
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1981, 65 (01): : 172 - 180
  • [7] Folland G.B., 1992, FOURIER ANAL ITAPP
  • [8] Hamermesh M., 1962, Group Theory
  • [9] Raising and lowering operators, factorization and differential/difference operators of hypergeometric type
    Lorente, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 569 - 588
  • [10] Olver F.W.J., 2010, NIST handbook of mathematical functions