BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES

被引:45
作者
Hmidi, Taoufik [1 ]
Mateu, Joan [2 ]
机构
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Kirchhoff vortices; rotating patches; bifurcation; STEADY-STATE SOLUTIONS; EULER EQUATIONS; 2; DIMENSIONS; V-STATES; VORTEX; CONFIGURATIONS; REGULARITY; STABILITY; DYNAMICS; WAVES;
D O I
10.3934/dcds.2016038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of a new family of rotating patches for the planar Euler equations. We shall prove the existence of countable branches bifurcating from the ellipses at some implicit angular velocities. The proof uses bifurcation tools combined with the explicit parametrization of the ellipse through the exterior conformal mappings. The boundary is shown to belong to Holderian class.
引用
收藏
页码:5401 / 5422
页数:22
相关论文
共 50 条
[31]   Vortices in Rotating Gravitating Gas Disks [J].
M. G. Abrahamyan .
Astrophysics, 2015, 58 :89-105
[32]   The Nonexistence of Vortices for Rotating Bose-Einstein Condensates with Attractive Interactions [J].
Guo, Yujin ;
Luo, Yong ;
Yang, Wen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (03) :1231-1281
[33]   Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder [J].
Lin, Te-Sheng ;
Rogers, Steven ;
Tseluiko, Dmitri ;
Thiele, Uwe .
PHYSICS OF FLUIDS, 2016, 28 (08)
[34]   Stability and Bifurcation Analysis of a Nonlinear Rotating Cantilever Plate System [J].
Chen, Shuping ;
Zhang, Danjin ;
Qian, Youhua .
SYMMETRY-BASEL, 2022, 14 (03)
[35]   Manipulating vortices with a rotating laser beam in Bose-Einstein condensates [J].
Di, Xuefeng ;
Nie, Yu-Hang ;
Yang, Tao .
LASER PHYSICS, 2023, 33 (08)
[36]   Poleward translation of vortices due to deep thermal convection on a rotating planet [J].
Afanasyev, Y. D. ;
Huang, Y. -C. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2020, 114 (06) :821-834
[37]   The formation of new quasi-stationary vortex patterns from the interaction of two identical vortices in a rotating fluid [J].
Sokolovskiy, Mikhail A. ;
Verron, Jacques ;
Carton, Xavier J. .
OCEAN DYNAMICS, 2018, 68 (06) :723-733
[38]   On vibration behavior and motion bifurcation of a nonlinear asymmetric rotating shaft [J].
Saeed, N. A. .
ARCHIVE OF APPLIED MECHANICS, 2019, 89 (09) :1899-1921
[39]   Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations [J].
Liu, Fang ;
Luo, Hua ;
Dai, Guowei .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (29) :1-13
[40]   Linear and non-linear instabilities of Kirchhoff's elliptical vortices [J].
Fracassi Farias, Calvin A. ;
Pakter, Renato ;
Levin, Yan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (08)