共 50 条
BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES
被引:42
|作者:
Hmidi, Taoufik
[1
]
Mateu, Joan
[2
]
机构:
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词:
Kirchhoff vortices;
rotating patches;
bifurcation;
STEADY-STATE SOLUTIONS;
EULER EQUATIONS;
2;
DIMENSIONS;
V-STATES;
VORTEX;
CONFIGURATIONS;
REGULARITY;
STABILITY;
DYNAMICS;
WAVES;
D O I:
10.3934/dcds.2016038
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we investigate the existence of a new family of rotating patches for the planar Euler equations. We shall prove the existence of countable branches bifurcating from the ellipses at some implicit angular velocities. The proof uses bifurcation tools combined with the explicit parametrization of the ellipse through the exterior conformal mappings. The boundary is shown to belong to Holderian class.
引用
收藏
页码:5401 / 5422
页数:22
相关论文