BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES

被引:42
|
作者
Hmidi, Taoufik [1 ]
Mateu, Joan [2 ]
机构
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Kirchhoff vortices; rotating patches; bifurcation; STEADY-STATE SOLUTIONS; EULER EQUATIONS; 2; DIMENSIONS; V-STATES; VORTEX; CONFIGURATIONS; REGULARITY; STABILITY; DYNAMICS; WAVES;
D O I
10.3934/dcds.2016038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of a new family of rotating patches for the planar Euler equations. We shall prove the existence of countable branches bifurcating from the ellipses at some implicit angular velocities. The proof uses bifurcation tools combined with the explicit parametrization of the ellipse through the exterior conformal mappings. The boundary is shown to belong to Holderian class.
引用
收藏
页码:5401 / 5422
页数:22
相关论文
共 50 条
  • [1] Degenerate bifurcation of the rotating patches
    Hmidi, Taoufik
    Mateu, Joan
    ADVANCES IN MATHEMATICS, 2016, 302 : 799 - 850
  • [2] Global Bifurcation of Rotating Vortex Patches
    Hassainia, Zineb
    Masmoudi, Nader
    Wheeler, Miles H.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (09) : 1933 - 1980
  • [3] On rotating doubly connected vortices
    Hmidi, Taoufik
    Mateu, Joan
    Verdera, Joan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1395 - 1429
  • [5] Global Bifurcation for Corotating and Counter-Rotating Vortex Pairs
    Garcia, Claudia
    Haziot, Susanna, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (02) : 1167 - 1204
  • [6] Rotating vortex patches for the planar Euler equations in a disk
    Cao, Daomin
    Wan, Jie
    Wang, Guodong
    Zhan, Weicheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 509 - 532
  • [7] Stability of elliptical vortices from "Imperfect-Velocity-Impulse" diagrams
    Luzzatto-Fegiz, Paolo
    Williamson, Charles H. K.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (1-4) : 181 - 188
  • [8] Transition from vortices to solitonic vortices in trapped atomic Bose-Einstein condensates
    Tsatsos, M. C.
    Edmonds, M. J.
    Parker, N. G.
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [9] Vortices in stably-stratified rapidly rotating Boussinesq convection
    Goh, Ryan
    Wayne, C. Eugene
    NONLINEARITY, 2019, 32 (05) : R1 - R52
  • [10] On radial symmetry of rotating vortex patches in the disk
    Wang, Guodong
    Zuo, Bijun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)