Solitons in non-commutative gauge theory

被引:0
|
作者
Gross, DJ [1 ]
Nekrasov, NA
机构
[1] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
来源
关键词
solitons monopoles and instantons; non-perturbative effects; D-branes; brane dynamics in gauge theories;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a unified treatment of classical solutions of non-commutative gauge theories. We find all solutions of the non-commutative Yang-Mills equations of motion in 2 dimensions; and show that they are labeled by two integers - the rank of the gauge group and the magnetic charge. The magnetic vortex solutions are unstable in 2 + 1 dimensions, but correspond to the full, stable BPS solutions of N = 4U(1) non-commutative gauge theory in 4 dimensions, that describes N infinite D1 strings that pierce a D3-brane at various points, in the presence of a background B-field in the Seiberg-Witten alpha' --> 0 limit. We discuss the behavior of gauge invariant observables in the background of the solitons. We use these solutions to construct a panoply of BPS and non-BPS solutions of supersymmetric gauge theories that describe various configurations of D-branes. We analyze the instabilites of the non-BPS solitons. We also present an exact analytic solution of non-commutative gauge theory that describes a U(2) monopole.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Gauge theories and non-commutative geometry
    Floratos, EG
    Iliopoulos, J
    PHYSICS LETTERS B, 2006, 632 (04) : 566 - 570
  • [32] A review of non-commutative gauge theories
    N. G. Deshpande
    Pramana, 2003, 60 : 189 - 198
  • [33] A review of non-commutative gauge theories
    Deshpande, NG
    PRAMANA-JOURNAL OF PHYSICS, 2003, 60 (02): : 189 - 198
  • [34] Duality and gauge invariance of non-commutative spacetime Podolsky electromagnetic theory
    Abreu, Everton M. C.
    Fernandes, Rafael L.
    Mendes, Albert C. R.
    Ananias Neto, Jorge
    Neves Jr, Mario
    MODERN PHYSICS LETTERS A, 2017, 32 (03)
  • [35] Dominance of a single topological sector in gauge theory on non-commutative geometry
    Aoki, Hajime
    Nishimura, Jun
    Susaki, Yoshiaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [36] Gauge theory on discrete spaces without recourse to non-commutative geometry
    Konisi, G
    Saito, T
    PROGRESS OF THEORETICAL PHYSICS, 1996, 95 (03): : 657 - 664
  • [37] Non-commutative gauge theory on D-branes in Melvin universes
    Hashimoto, A
    Thomas, K
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (01):
  • [38] Non-commutative gauge theory, open Wilson lines and closed strings
    Dhar, A
    Kitazawa, Y
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08):
  • [39] Dual string description of Wilson loop in non-commutative gauge theory
    Huang, Wung-Hong
    PHYSICS LETTERS B, 2007, 647 (5-6) : 519 - 525
  • [40] Geometry of the gauge algebra in non-commutative Yang-Mills theory
    Lizzi, F
    Zampini, A
    Szabo, RJ
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (08): : 1 - 53