Water vapor observations up to the lower stratosphere through the Raman lidar during the Ma⟨do Lidar Calibration Campaign

被引:18
作者
Dionisi, D. [1 ,2 ]
Keckhut, P. [1 ]
Courcoux, Y. [1 ]
Hauchecorne, A. [1 ]
Porteneuve, J. [1 ]
Baray, J. L. [3 ]
de Bellevue, J. Leclair [4 ]
Veremes, H. [4 ,5 ]
Gabarrot, F. [5 ]
Payen, G. [4 ,5 ]
Decoupes, R. [4 ,5 ]
Cammas, J. P. [4 ,5 ]
机构
[1] Univ Paris 11, UVSQ UPMC, Lab ATmospheres Milieux Observat Spatiales IPSL, CNRS INSU,UMR8190, Guyancourt, France
[2] CNR, Ist Sci Atmosfera & Clima, Rome, Italy
[3] Univ Blaise Pascal, LaMP Lab Meteorol Phys, Observ Phys Globe Clermont Ferrand, CNRS INSU,UMR6016, Clermont Ferrand, France
[4] Univ Reunion Meteofrance, LACy Lab Atmosphere & Cyclones, CNRS, UMR8105, St Denis, Reunion, France
[5] Univ Reunion, CNRS, OSU Reunion, Obser Sci Univers,UMS 3365, St Denis, Reunion, France
关键词
IN-SITU; UPPER TROPOSPHERE; ATMOSPHERIC-TEMPERATURE; REUNION ISLAND; ACCURACY; GPS; SCATTERING; APPLICABILITY; HYGROMETERS; METHODOLOGY;
D O I
10.5194/amt-8-1425-2015
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A new lidar system devoted to tropospheric and lower stratospheric water vapor measurements has been installed at the Ma < do altitude station facility of R,union island, in the southern subtropics. To evaluate the performances and the capabilities of the new system with a particular focus on UTLS (Upper Troposphere Lower Stratosphere) measurements, the Ma < do Lidar Calibration Campaign (MALICCA) was performed in April 2013. Varying the characteristics of the transmitter and the receiver components, different system configuration scenarios were tested and possible parasite signals (fluorescent contamination, rejection) were investigated. A hybrid calibration methodology has been set up and validated to insure optimal lidar calibration stability with time. In particular, the receiver transmittance is monitored through the calibration lamp method that, at the moment, can detect transmittance variations greater than 10-15%. Calibration coefficients are then calculated through the hourly values of IWV (Integrated Water Vapor) provided by the co-located GPS. The comparison between the constants derived by GPS and Vaisala RS92 radiosondes launched at Ma < do during MALICCA, points out an acceptable agreement in terms of accuracy of the mean calibration value (with a difference of approximately 2-3%), but a significant difference in terms of variability (14% vs. 7-9%, for GPS and RS92 calibration procedures, respectively). We obtained a relatively good agreement between the lidar measurements and 15 co-located and simultaneous RS92 radiosondes. A relative difference below 10% is measured in the low and middle troposphere (2-10 km). The upper troposphere (up to 15 km) is characterized by a larger spread (approximately 20%), because of the increasing distance between the two sensors. To measure water vapor in the UTLS region, nighttime and monthly water vapor profiles are presented and compared. The good agreement between the lidar monthly profile and the mean WVMR profile measured by satellite MLS (Microwave Limb Sounder) has been used as a quality control procedure of the lidar product, attesting the absence of significant wet biases and validating the calibration procedure. Due to its performance and location, the MAIDO H2O lidar will become a reference instrument in the southern subtropics, insuring the long-term survey of the vertical distribution of water vapor. Furthermore, this system allows the investigation of several scientific themes, such as stratosphere-troposphere exchange, tropospheric dynamics in the subtropics, and links between cirrus clouds and water vapor.
引用
收藏
页码:1425 / 1445
页数:21
相关论文
共 70 条
[1]  
[Anonymous], 1972, Use Artif. Satell. Geodesy
[2]   An instrumented station for the survey of ozone and climate change in the southern tropics [J].
Baray, J. -L. ;
Leveau, J. ;
Baldy, S. ;
Jouzel, J. ;
Keckhut, P. ;
Bergametti, G. ;
Ancellet, G. ;
Bencherif, H. ;
Cadet, B. ;
Carleer, M. ;
David, C. ;
De Maziere, M. ;
Faduilhe, D. ;
Beekmann, S. Godin ;
Goloub, P. ;
Goutail, F. ;
Metzger, J. M. ;
Morel, B. ;
Pommereau, J. P. ;
Porteneuve, J. ;
Portafaix, T. ;
Posny, F. ;
Robert, L. ;
Van Roozendael, M. .
JOURNAL OF ENVIRONMENTAL MONITORING, 2006, 8 (10) :1020-1028
[3]   Maido observatory: a new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements [J].
Baray, J. -L. ;
Courcoux, Y. ;
Keckhut, P. ;
Portafaix, T. ;
Tulet, P. ;
Cammas, J. -P. ;
Hauchecorne, A. ;
Beekmann, S. Godin ;
De Maziere, M. ;
Hermans, C. ;
Desmet, F. ;
Sellegri, K. ;
Colomb, A. ;
Ramonet, M. ;
Sciare, J. ;
Vuillemin, C. ;
Hoareau, C. ;
Dionisi, D. ;
Duflot, V. ;
Veremes, H. ;
Porteneuve, J. ;
Gabarrot, F. ;
Gaudo, T. ;
Metzger, J. -M. ;
Payen, G. ;
de Bellevue, J. Leclair ;
Barthe, C. ;
Posny, F. ;
Ricaud, P. ;
Abchiche, A. ;
Delmas, R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (10) :2865-2877
[4]   GPS METEOROLOGY - REMOTE-SENSING OF ATMOSPHERIC WATER-VAPOR USING THE GLOBAL POSITIONING SYSTEM [J].
BEVIS, M ;
BUSINGER, S ;
HERRING, TA ;
ROCKEN, C ;
ANTHES, RA ;
WARE, RH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) :15787-15801
[5]   GPS water vapor project associated to the ESCOMPTE programme:: description and first results of the field experiment [J].
Bock, O ;
Doerflinger, E ;
Masson, F ;
Walpersdorf, A ;
Van-Baelen, J ;
Tarniewicz, J ;
Troller, M ;
Somieski, A ;
Geiger, A ;
Bürki, B .
PHYSICS AND CHEMISTRY OF THE EARTH, 2004, 29 (2-3) :149-157
[6]   Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP [J].
Bock, O. ;
Bosser, P. ;
Bourcy, T. ;
David, L. ;
Goutail, F. ;
Hoareau, C. ;
Keckhut, P. ;
Legain, D. ;
Pazmino, A. ;
Pelon, J. ;
Pipis, K. ;
Poujol, G. ;
Sarkissian, A. ;
Thom, C. ;
Tournois, G. ;
Tzanos, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (10) :2777-2802
[7]   Raman Lidar for Meteorological Observations, RALMO - Part 1: Instrument description [J].
Dinoev, T. ;
Simeonov, V. ;
Arshinov, Y. ;
Bobrovnikov, S. ;
Ristori, P. ;
Calpini, B. ;
Parlange, M. ;
van den Bergh, H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (05) :1329-1346
[8]   Calibration of a Multichannel Water Vapor Raman Lidar through Noncollocated Operational Soundings: Optimization and Characterization of Accuracy and Variability [J].
Dionisi, Davide ;
Congeduti, Fernando ;
Liberti, Gian Luigi ;
Cardillo, Francesco .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (01) :108-121
[9]   Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde [J].
Dirksen, R. J. ;
Sommer, M. ;
Immler, F. J. ;
Hurst, D. F. ;
Kivi, R. ;
Voemel, H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (12) :4463-4490
[10]  
Durry G, 2001, J ATMOS OCEAN TECH, V18, P1485, DOI 10.1175/1520-0426(2001)018<1485:ANIDLS>2.0.CO