The birth and death of microRNA genes in Drosophila

被引:209
作者
Lu, Jian [1 ]
Shen, Yang [2 ]
Wu, Qingfa [4 ]
Kumar, Supriya [1 ]
He, Bin [1 ]
Shi, Suhua [2 ]
Carthew, Richard W. [3 ]
Wang, San Ming [4 ]
Wu, Chung-I [1 ,2 ]
机构
[1] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
[2] Sun Yat Sen Zhongshan Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzhou 510275, Peoples R China
[3] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA
[4] Northwestern Univ, Feinberg Sch Med, Evanston Northwestern Healthcare Res Inst, Dept Med,Div Med Genet,Ctr Funct Genom, Evanston, IL 60208 USA
关键词
D O I
10.1038/ng.73
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
MicroRNAs (miRNAs) are small, endogenously expressed RNAs that regulate mRNAs post-transcriptionally. The class of miRNA genes, like other gene classes, should experience birth, death and persistence of its members. We carried out deep sequencing of miRNAs from three species of Drosophila, and obtained 107,000 sequences that map to no fewer than 300 loci that were not previously known. We observe a large class of miRNA genes that are evolutionarily young, with a rate of birth of 12 new genes per million years (Myr). Most of these new miRNAs originated from non-miRNA sequences. Among the new genes, we estimate that 96% disappeared quickly in the course of evolution; only 4% of new miRNA genes were retained by natural selection. Furthermore, only 60% of these retained genes became integrated into the transcriptome in the long run (60 Myr). This small fraction (2.5%) of surviving miRNAs may later on become moderately or highly expressed. Our results suggest that there is a high birth rate of new miRNA genes, accompanied by a comparably high death rate. The estimated net gain of long-lived miRNA genes, which is not strongly affected by either the depth or the breadth (number of tissues) of sequencing, is 0.3 genes per Myr in Drosophila.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 26 条
  • [1] Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana
    Allen, E
    Xie, ZX
    Gustafson, AM
    Sung, GH
    Spatafora, JW
    Carrington, JC
    [J]. NATURE GENETICS, 2004, 36 (12) : 1282 - 1290
  • [2] MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing
    Ambros, V
    [J]. CELL, 2003, 113 (06) : 673 - 676
  • [3] The functions of animal microRNAs
    Ambros, V
    [J]. NATURE, 2004, 431 (7006) : 350 - 355
  • [4] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [5] Identification of hundreds of conserved and nonconserved human microRNAs
    Bentwich, I
    Avniel, A
    Karov, Y
    Aharonov, R
    Gilad, S
    Barad, O
    Barzilai, A
    Einat, P
    Einav, U
    Meiri, E
    Sharon, E
    Spector, Y
    Bentwich, Z
    [J]. NATURE GENETICS, 2005, 37 (07) : 766 - 770
  • [6] Diversity of microRNAs in human and chimpanzee brain
    Berezikov, Eugene
    Thuemmler, Fritz
    van Laake, Linda W.
    Kondova, Ivanela
    Bontrop, Ronald
    Cuppen, Edwin
    Plasterk, Ronald H. A.
    [J]. NATURE GENETICS, 2006, 38 (12) : 1375 - 1377
  • [7] Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis
    Berezikov, Eugene
    van Tetering, Geert
    Verheul, Mark
    van de Belt, Jose
    van Laake, Linda
    Vos, Joost
    Verloop, Robert
    van de Wetering, Marc
    Guryev, Victor
    Takada, Shuji
    van Zonneveld, Anton Jan
    Mano, Hiroyuki
    Plasterk, Ronald
    Cuppen, Edwin
    [J]. GENOME RESEARCH, 2006, 16 (10) : 1289 - 1298
  • [8] Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences
    Bonnet, E
    Wuyts, J
    Rouzé, P
    Van de Peer, Y
    [J]. BIOINFORMATICS, 2004, 20 (17) : 2911 - 2917
  • [9] *DROS COMP GEN SEQ, 2007, NATURE, V450, P230
  • [10] High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes
    Fahlgren, Noah
    Howell, Miya D.
    Kasschau, Kristin D.
    Chapman, Elisabeth J.
    Sullivan, Christopher M.
    Cumbie, Jason S.
    Givan, Scott A.
    Law, Theresa F.
    Grant, Sarah R.
    Dangl, Jeffery L.
    Carrington, James C.
    [J]. PLOS ONE, 2007, 2 (02):