Three-block exceptional collections over Del Pezzo surfaces

被引:39
作者
Karpov, BV
Nogin, DY
机构
关键词
D O I
10.1070/IM1998v062n03ABEH000205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study complete exceptional collections of coherent sheaves over Del Pezzo surfaces that consist of three blocks such that all Ext groups between the sheaves inside each block are zero. We show that the ranks of all sheaves in such a block are equal, and that the three ranks corresponding to a complete 3-block exceptional collection satisfy a Markov;type Diophantine equation, which is quadratic in each variable. For each Del Pezzo surface, there are finitely many such equations, and we give a complete list of them. The 3-string braid group acts by mutations on the set of complete 3-block exceptional collections. We describe this action. In particular, any orbit contains a 3-block collection the sum of whose ranks is minimal for the solutions of the corresponding Markov-type equation, and the orbits can be obtained from each other under tensoring with an invertible sheaf and the action of the Weyl group. This enables us to compute the number of orbits up to twisting.
引用
收藏
页码:429 / 463
页数:35
相关论文
共 19 条
[1]  
Atiyah M. F., 1957, Proceedings of the London Mathematical Society, V7, P414, DOI 10.1112/plms/s3-7.1.414
[2]   EXCEPTIONAL FIBERS AND GENERALIZED BEILINSON SPECTRAL SERIES ON P2(C) [J].
DREZET, JM .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :25-48
[3]  
DREZET JM, 1985, ANN SCI ECOLE NORM S, V18, P193
[4]  
DREZET JM, 1987, J REINE ANGEW MATH, V380, P14
[5]  
DREZET JM, 1991, ANN MATH, V290, P727
[6]   EXCEPTIONAL VECTOR-BUNDLES ON PROJECTIVE SPACES [J].
GORODENTSEV, AL ;
RUDAKOV, AN .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :115-130
[7]  
GORODENTSEV AL, 1989, MATH USSR IZV, V33, P67
[8]   EXCEPTIONAL SHEAVES ON DEL PEZZO SURFACES [J].
KULESHOV, SA ;
ORLOV, DO .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1995, 44 (03) :479-513
[9]  
KULESHOV SA, 1995, MPI9511
[10]  
KULESHOV SA, 1994, 1 MK IND U MOSC