Boundedness of generalized Cesaro averaging operators on certain function spaces

被引:13
作者
Agrawal, MR
Howlett, PG
Lucas, SK
Naik, S
Ponnusamy, S [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Univ S Australia, Sch Math, Ctr Ind & Appl Math, Mawson Lakes, SA 5095, Australia
关键词
Gaussian hypergeometric functions; Cesaro operators;
D O I
10.1016/j.cam.2004.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a two-parameter family of Cesaro averaging operators P-b,P-c, P-b,P-c f(z) = Gamma(b + 1)/Gamma(c)Gamma(b + 1 - c) integral(1)(0) t(c-1) (1 - t)(b-c) (1 - tz)F(1, b + 1; c; tz) f(tz) dt, where Re (b + 1) > Re c > 0, f(z) = Sigma(infinity)(n=0) a(n)z(n) is analytic on the unit disc Delta, and F (a, b; c; z) is the classical hypergeometric function. In the present article the boundedness of P-b,P-c, Re (b + 1) > Re c > 0, on various function spaces such as Hard,, BMOA and a-Bloch spaces is proved. In the special case b = 1 + alpha and c = 1, P-b,P-c becomes the alpha-Cesdro operator l(a), Re alpha > - 1. Thus, our results connect the special functions in a natural way and extend and improve several well-known results of Hardy-Littlewood, Miao, Stempak and Xiao. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 344
页数:12
相关论文
共 19 条
[1]  
Anderson G.D., 1997, CONFORMAL INVARINANT
[2]  
ANDREWS GE, 1999, SPEICAL FUNCTIONS
[3]   On alpha-bloch spaces and multipliers of Dirichlet spaces [J].
Aulaskari, R ;
Lappan, P ;
Xiao, J ;
Zhao, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 209 (01) :103-121
[4]  
Bateman H., 1953, HIGHER TRANSCENDENTA, V1
[5]   COEFFICIENTS OF BLOCH AND LIPSCHITZ FUNCTIONS [J].
BENNETT, G ;
STEGENGA, DA ;
TIMONEY, RM .
ILLINOIS JOURNAL OF MATHEMATICS, 1981, 25 (03) :520-531
[6]  
DANIKAS N, 1993, ANALYSIS, V13, P195
[7]  
DUREN P. L., 1970, Theory of Spaces
[8]  
GIREAL D, 2001, U JOENSUU DEP MATH R, V4, P9
[9]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439