Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming

被引:37
|
作者
Hou, Xiaoning [1 ,2 ]
Qing, Shaojun [1 ,2 ]
Liu, Yajie [3 ]
Li, Lindong [1 ]
Gao, Zhixian [1 ]
Qin, Yong [4 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jinzhong Univ, Coll Chem & Chem Engn, Jinzhong 030619, Peoples R China
[4] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu-Al spinel; Sustained release catalysis; MgO modification; Strong interaction; Methanol steaming reforming; HYDROGEN-PRODUCTION; MGAL2O4; SURFACE; CU/ZNO/AL2O3; PERFORMANCE; REACTOR; SHIFT; SPECTROSCOPY; NI-CU/AL2O3; REDUCTION;
D O I
10.1016/j.ijhydene.2019.10.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu-Al spinel oxide (CA) as a sustained release catalyst has been successfully used in methanol steam reforming and it is highly required to improve its catalytic performance. Here, surface modification of the CA with various MgO loadings was performed. Characterization results showed that MgO dopant had strong interaction with the CA, resulting in a substantial change of the surface microstructure. Importantly, a small portion of lattice Cu2+ was phased out while partial me, cations incorporated into the spinel structure, giving rise to a variation of the cation distribution. Consequently, the change of the Cu2+ surrounding environment made it become hard to be reducible, thus the doped catalysts showed a lower copper releasing rate and smaller copper particles. Then, the activity and stability were enhanced when a suitable amount of MgO was highly dispersed. Excess amount of crystalline MgO gave rise to easy coking that resulted in an inferior catalytic performance. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:477 / 489
页数:13
相关论文
empty
未找到相关数据