Classification of Human Activity by Using a Stacked Autoencoder

被引:0
|
作者
Badem, Hasan [1 ]
Caliskan, Abdullah [2 ]
Basturk, Alper [1 ]
Yuksel, Mehmet Emin [2 ]
机构
[1] Erciyes Univ, Bilgisayar Muhendisligi Bolumu, Kayseri, Turkey
[2] Erciyes Univ, Biyomed Muhendisligi Bolumu, Kayseri, Turkey
关键词
Deep Neural Network; Stacked Autoencoder; Softmax; Human Activity Recognition;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the application of a deep neural network architecture that consists of stackted autoencoder with two autoencoders and a softmax layer for the purpose of human activity classification. Th performance of the proposed architecture is tested on a commonly used data set known as Human Activity Recognition Using Smartphones. It is observed that the proposed method yields better classification results than the representative state-of-the-art methods provided that the parameters of the deep network are suitably optimized.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
    Lai, Jie
    Wang, Xiaodan
    Xiang, Qian
    Quan, Wen
    Song, Yafei
    ENTROPY, 2023, 25 (09)
  • [22] Experiments on classification of electroencephalography (EEG) signals in imagination of direction using Stacked Autoencoder
    Tomonaga, Kenta
    Hayakawa, Takuya
    Kobayashi, Jun
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P468 - P471
  • [23] A Stacked Deep Autoencoder Model for Biomedical Figure Classification
    Almakky, Ibrahim
    Palade, Vasile
    Hedley, Yih-Ling
    Yang, Jianhua
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1134 - 1138
  • [24] UNSUPERVISED STACKED CAPSULE AUTOENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Ma, Jiayi
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1825 - 1829
  • [25] Stacked sparse autoencoder and history of binary motion image for human activity recognition
    Gnouma, Mariem
    Ladjailia, Ammar
    Ejbali, Ridha
    Zaied, Mourad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (02) : 2157 - 2179
  • [26] Semisupervised Stacked Autoencoder With Cotraining for Hyperspectral Image Classification
    Zhou, Shaoguang
    Xue, Zhaohui
    Du, Peijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3813 - 3826
  • [27] Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
    Li, Zexin
    Yang, Kaiji
    Zhang, Lili
    Wei, Chiju
    Yang, Peixuan
    Xu, Wencan
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY, 2020, 2020
  • [28] Stacked sparse autoencoder and history of binary motion image for human activity recognition
    Mariem Gnouma
    Ammar Ladjailia
    Ridha Ejbali
    Mourad Zaied
    Multimedia Tools and Applications, 2019, 78 : 2157 - 2179
  • [29] Multi-label classification using a cascade of stacked autoencoder and extreme learning machines
    Law, Anwesha
    Ghosh, Ashish
    NEUROCOMPUTING, 2019, 358 : 222 - 234
  • [30] Classification Method of Tactile Feeling using Stacked Autoencoder Based on Haptic Primary Colors
    Kato, Fumihiro
    Fernando, Charith Lasantha
    Inoue, Yasuyuki
    Tachi, Susumu
    2017 IEEE VIRTUAL REALITY (VR), 2017, : 391 - 392