Classification of Human Activity by Using a Stacked Autoencoder

被引:0
作者
Badem, Hasan [1 ]
Caliskan, Abdullah [2 ]
Basturk, Alper [1 ]
Yuksel, Mehmet Emin [2 ]
机构
[1] Erciyes Univ, Bilgisayar Muhendisligi Bolumu, Kayseri, Turkey
[2] Erciyes Univ, Biyomed Muhendisligi Bolumu, Kayseri, Turkey
来源
2016 MEDICAL TECHNOLOGIES NATIONAL CONFERENCE (TIPTEKNO) | 2015年
关键词
Deep Neural Network; Stacked Autoencoder; Softmax; Human Activity Recognition;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the application of a deep neural network architecture that consists of stackted autoencoder with two autoencoders and a softmax layer for the purpose of human activity classification. Th performance of the proposed architecture is tested on a commonly used data set known as Human Activity Recognition Using Smartphones. It is observed that the proposed method yields better classification results than the representative state-of-the-art methods provided that the parameters of the deep network are suitably optimized.
引用
收藏
页数:4
相关论文
共 12 条
  • [1] Anguita D., P ESANN
  • [2] [Anonymous], 2005, P 17 C INNOVATIVE AP
  • [3] Bache K, 2013, UCI machine learning repository
  • [4] Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
  • [5] Bengio Yoshua, 2006, Advances in Neural Information Processing Systems 19, V19, P153
  • [6] Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
    Karantonis, DM
    Narayanan, MR
    Mathie, M
    Lovell, NH
    Celler, BG
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (01): : 156 - 167
  • [7] Le Q.V., 2011, P 28 INT C INT C MAC
  • [8] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [9] Lukowicz P, 2004, LECT NOTES COMPUT SC, V3001, P18
  • [10] Thurau C., 2008, CVPR, P1, DOI DOI 10.1109/CVPR.2008.4587721