Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies

被引:21
|
作者
Rahimnejad, Maedeh [1 ]
Rezvaninejad, Raziyehsadat [2 ]
Rezvaninejad, Rayehehossadat
Franca, Rodrigo [3 ]
机构
[1] Univ Montreal, Inst Biomed Engn, Montreal, PQ, Canada
[2] Hormozgan Univ Med Sci, Fac Dent, Dept Oral Med, Hormozgan, Iran
[3] Univ Manitoba, Fac Hlth Sci, Coll Dent, Dept Restorat Dent, Winnipeg, MB, Canada
关键词
bioprinting; 3D printing; bone tissue engineering; biomaterials; TRICALCIUM PHOSPHATE SCAFFOLDS; INDUCED PHASE-SEPARATION; BIPHASIC CALCIUM PHOSPHATES; BIOACTIVE GLASS SCAFFOLDS; HIGH-DENSITY POLYETHYLENE; MESENCHYMAL STEM-CELLS; IN-VITRO; CERAMIC SCAFFOLDS; BIOLOGICAL-PROPERTIES; OSTEOGENIC DIFFERENTIATION;
D O I
10.1088/2057-1976/ac21ab
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue for in vivo applications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration
    Heller, M.
    Bauer, H. -K.
    Goetze, E.
    Gielisch, M.
    Ozbolat, I. T.
    Moncal, K. K.
    Rizk, E.
    Seitz, H.
    Gelinsky, M.
    Schrder, H. C.
    Wang, X. H.
    Mueller, W. E. G.
    Al-Nawas, B.
    INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY, 2016, 19 (04) : 301 - 321
  • [22] 3D bioprinting and the current applications in tissue engineering
    Huang, Ying
    Zhang, Xiao-Fei
    Gao, Guifang
    Yonezawa, Tomo
    Cui, Xiaofeng
    BIOTECHNOLOGY JOURNAL, 2017, 12 (08)
  • [23] 3D Bioprinting Technologies for Hard Tissue and Organ Engineering
    Wang, Xiaohong
    Ao, Qiang
    Tian, Xiaohong
    Fan, Jun
    Wei, Yujun
    Hou, Weijian
    Tong, Hao
    Bai, Shuling
    MATERIALS, 2016, 9 (10)
  • [24] Extrusion 3D printing advances for craniomaxillofacial bone tissue engineering
    Murali, Athira
    Parameswaran, Ramesh
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (07): : 889 - 912
  • [25] Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update
    Khalaf, Ahmad Taha
    Wei, Yuanyuan
    Wan, Jun
    Zhu, Jiang
    Peng, Yu
    Kadir, Samiah Yasmin Abdul
    Zainol, Jamaludin
    Oglah, Zahraa
    Cheng, Lijia
    Shi, Zheng
    LIFE-BASEL, 2022, 12 (06):
  • [26] Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering
    Hogan, Katie J.
    Oztatli, Hayriye
    Perez, Marissa R.
    Si, Sophia
    Umurhan, Reyhan
    Jui, Elysa
    Wang, Ziwen
    Jiang, Emily Y.
    Han, Sa R.
    Diba, Mani
    Grande-Allen, K. Jane
    Garipcan, Bora
    Mikos, Antonios G.
    REGENERATIVE BIOMATERIALS, 2023, 10
  • [27] Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering
    Xu, Zeya
    Lin, Bin
    Zhao, Chaoqian
    Lu, Yanjin
    Huang, Tingting
    Chen, Yan
    Li, Jungang
    Wu, Rongcan
    Liu, Wenge
    Lin, Jinxin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 229 - 242
  • [28] Bibliometric and visualized analysis of 3D printing bioink in bone tissue engineering
    Xu, Kaihao
    Yu, Sanyang
    Wang, Zhenhua
    Zhang, Zhichang
    Zhang, Zhongti
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [29] 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering
    De Mori, Arianna
    Fernandez, Marta Pena
    Blunn, Gordon
    Tozzi, Gianluca
    Roldo, Marta
    POLYMERS, 2018, 10 (03)
  • [30] 3D Printing and Biofabrication for Load Bearing Tissue Engineering
    Jeong, Claire G.
    Atala, Anthony
    ENGINEERING MINERALIZED AND LOAD BEARING TISSUES, 2015, 881 : 3 - 14