Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies

被引:21
|
作者
Rahimnejad, Maedeh [1 ]
Rezvaninejad, Raziyehsadat [2 ]
Rezvaninejad, Rayehehossadat
Franca, Rodrigo [3 ]
机构
[1] Univ Montreal, Inst Biomed Engn, Montreal, PQ, Canada
[2] Hormozgan Univ Med Sci, Fac Dent, Dept Oral Med, Hormozgan, Iran
[3] Univ Manitoba, Fac Hlth Sci, Coll Dent, Dept Restorat Dent, Winnipeg, MB, Canada
关键词
bioprinting; 3D printing; bone tissue engineering; biomaterials; TRICALCIUM PHOSPHATE SCAFFOLDS; INDUCED PHASE-SEPARATION; BIPHASIC CALCIUM PHOSPHATES; BIOACTIVE GLASS SCAFFOLDS; HIGH-DENSITY POLYETHYLENE; MESENCHYMAL STEM-CELLS; IN-VITRO; CERAMIC SCAFFOLDS; BIOLOGICAL-PROPERTIES; OSTEOGENIC DIFFERENTIATION;
D O I
10.1088/2057-1976/ac21ab
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue for in vivo applications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [2] 3D printing in tissue engineering: a state of the art review of technologies and biomaterials
    Poomathi, Nataraj
    Singh, Sunpreet
    Prakash, Chander
    Subramanian, Arjun
    Sahay, Rahul
    Cinappan, Amutha
    Ramakrishna, Seeram
    RAPID PROTOTYPING JOURNAL, 2020, 26 (07) : 1313 - 1334
  • [3] Advances in 3D Printing for Tissue Engineering
    Zaszczynska, Angelika
    Moczulska-Heljak, Maryla
    Gradys, Arkadiusz
    Sajkiewicz, Pawel
    MATERIALS, 2021, 14 (12)
  • [4] 3D Bioprinting Technologies for Tissue Engineering Applications
    Gu, Bon Kang
    Choi, Dong Jin
    Park, Sang Jun
    Kim, Young-Jin
    Kim, Chun-Ho
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 15 - 28
  • [5] Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds
    Ren, Ya
    Zhang, Changru
    Liu, Yihao
    Kong, Weiqing
    Yang, Xue
    Niu, Haoyi
    Qiang, Lei
    Yang, Han
    Yang, Fei
    Wang, Chengwei
    Wang, Jinwu
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 10 (01) : 255 - 270
  • [6] 3D Printing of Bioceramics for Bone Tissue Engineering
    Zafar, Muhammad Jamshaid
    Zhu, Dongbin
    Zhang, Zhengyan
    MATERIALS, 2019, 12 (20)
  • [7] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [8] Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting
    Alizadeh, Parvin
    Soltani, Mohammad
    Tutar, Rumeysa
    Apu, Ehsanul Hoque
    Maduka, Chima V.
    Unluturk, Bige Deniz
    Contag, Christopher H.
    Ashammakhi, Nureddin
    3D BIOPRINTING, 2021, 65 (03): : 441 - 466
  • [9] Recent Advances in Biomaterials for 3D Printing and Tissue Engineering
    Jammalamadaka, Udayabhanu
    Tappa, Karthik
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2018, 9 (01)
  • [10] 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering
    Yu, Xiaoling
    Zhang, Tian
    Li, Yuan
    POLYMERS, 2020, 12 (08)