1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell

被引:126
作者
Ferreira, Rui B. [1 ]
Falcao, D. S. [1 ]
Oliveira, V. B. [1 ]
Pinto, A. M. F. R. [1 ]
机构
[1] Univ Porto, Fac Engn, Chem Engn Dept, Transport Phenomena Res Ctr CEFT, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal
关键词
PEM fuel cells; Water management; Two-phase flow; Numerical model; Volume of fluid method; LIQUID WATER TRANSPORT; GAS-DIFFUSION LAYER; VALIDATED LEVERETT APPROACH; MULTIPHASE FLOW; CAPILLARY-PRESSURE; CATHODE CHANNEL; POROUS-MEDIA; AIR-CATHODE; VISUALIZATION; SIMULATION;
D O I
10.1016/j.apenergy.2017.06.048
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, a numerical model of a proton exchange membrane (PEM) fuel cell is presented. The volume of fluid (VOF) method is employed to simulate the air-water two-phase flow in the cathode gas channel, at the same time that the cell electrochemical performance is predicted. The model is validated against an experimental polarization curve and through the visualization of water distribution inside a transparent fuel cell. The water dynamics inside a serpentine gas channel is numerically analyzed under different operating voltages. Moreover, water content in different regions of the channel is quantified. Current density and water generation rate spatial distributions are also displayed and it is shown how they affect the process of water emergence into the gas channel. Important issues on the simulation of the PEM fuel cells two-phase flow are addressed, especially concerning the coupling of the VOF technique with electrochemical reactions. Both the model and the numerical results aim to contribute to a better understanding of the two-phase flow phenomenon that occurs in these devices. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:474 / 495
页数:22
相关论文
共 76 条
[1]   A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells [J].
Andersson, M. ;
Beale, S. B. ;
Espinoza, M. ;
Wu, Z. ;
Lehnertbe, W. .
APPLIED ENERGY, 2016, 180 :757-778
[2]   Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance [J].
Antonacci, P. ;
Chevalier, S. ;
Lee, J. ;
Yip, R. ;
Ge, N. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) :16494-16502
[3]   Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells [J].
Ashrafi, Moosa ;
Shams, Mehrzad ;
Bozorgnezhad, Ali ;
Ahmadi, Goodarz .
HEAT AND MASS TRANSFER, 2016, 52 (12) :2671-2686
[4]  
Barbir F., 2013, PEM Fuel Cells: Theory and Practice
[5]   Dynamic water transport and droplet emergence in PEMFC gas diffusion layers [J].
Bazylak, Aimy ;
Sinton, David ;
Djilali, Ned .
JOURNAL OF POWER SOURCES, 2008, 176 (01) :240-246
[6]   Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics [J].
Bednarek, Tomasz ;
Tsotridis, Georgios .
JOURNAL OF POWER SOURCES, 2017, 343 :550-563
[7]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[8]   Two-phase flow and droplet behavior in microchannels of PEM fuel cell [J].
Bozorgnezhad, Ali ;
Shams, Mehrzad ;
Kanani, Hornayoon ;
Hasherninasab, Mohammadreza ;
Ahmadi, Goodarz .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (42) :19164-19181
[9]   The experimental study of water management in the cathode channel of single-serpentine transparent proton exchange membrane fuel cell by direct visualization [J].
Bozorgnezhad, Ali ;
Shams, Mehrzad ;
Kanani, Homayoon ;
Hasheminasab, Mohammadreza ;
Ahmadi, Goodarz .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (06) :2808-2832
[10]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354