Heat conduction in deformable Frenkel-Kontorova lattices: Thermal conductivity and negative differential thermal resistance

被引:34
作者
Ai, Bao-quan [1 ,2 ,3 ,4 ]
Hu, Bambi [3 ,4 ,5 ]
机构
[1] S China Normal Univ, Lab Quantum Informat Technol, Inst Condensed Matter Phys, Guangzhou, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou, Guangdong, Peoples R China
[3] Hong Kong Baptist Univ, Dept Phys, Ctr Nonlinear Studies, Kowloon Tong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Kowloon Tong, Hong Kong, Peoples R China
[5] Univ Houston, Dept Phys, Houston, TX 77204 USA
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 01期
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevE.83.011131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Heat conduction through the Frenkel-Kontorova lattices is numerically investigated in the presence of a deformable substrate potential. It is found that the deformation of the substrate potential has a strong influence on heat conduction. The thermal conductivity as a function of the shape parameter is nonmonotonic. The deformation can enhance thermal conductivity greatly, and there exists an optimal deformable value at which thermal conductivity takes its maximum. Remarkably, we also find that the deformation can facilitate the appearance of the negative differential thermal resistance.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Heat conduction in driven Frenkel-Kontorova lattices: Thermal pumping and resonance [J].
Ai, Bao-quan ;
He, Dahai ;
Hu, Bambi .
PHYSICAL REVIEW E, 2010, 81 (03)
[2]   Heat conductivity and dynamical instability [J].
Alonso, D ;
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1859-1862
[3]   Fermi-Pasta-Ulam β model:: Boundary jumps, Fourier's law, and scaling [J].
Aoki, K ;
Kusnezov, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :4029-4032
[4]   Anomalous heat conduction in a 2d Frenkel-Kontorova lattice [J].
Barik, D. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (03) :229-234
[5]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864
[6]   Comment on "Can disorder induce a finite thermal conductivity in 1D lattices?" [J].
Dhar, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :69401-1
[7]   Absence of local thermal equilibrium in two models of heat conduction [J].
Dhar, A ;
Dhar, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (03) :480-483
[8]   Heat transport in low-dimensional systems [J].
Dhar, Abhishek .
ADVANCES IN PHYSICS, 2008, 57 (05) :457-537
[9]  
Frenkel Y. I., 1938, Zh. Eksp. Teor. Fiz, V8, P1340
[10]   Heat conduction in the diatomic Toda lattice revisited [J].
Hatano, T .
PHYSICAL REVIEW E, 1999, 59 (01) :R1-R4