The method of spin labeling was used to monitor quick movements of side residues in protein monocrystals. The EPR spectra of monocrystals of spin-labeled lysozyme at different orientations of the tetrahonal crystal relative to the direction of the magnetic field were interpreted using the molecular dynamics method. A simple model was proposed, which enables one to calculate the trajectory of movements of the spin label by the molecular dynamic method over a relatively short period of time. The entire <<frozen>> protein molecule and a <<defrozen>> spin-labeled amino acid residue were considered in the framework of the model. To calculate the trajectories in vacuum, a model of spin-labeled lysozyme was constructed, and the parameters of force potentials for the atoms of the protein molecule and the spin label were specified. It follows from the calculations that the protein environment sterically hinders the range of eventual angular reorientations of the reporter NO-group of nitroxyl incorporated into the spin label, thereby affecting the shape of the EPR spectrum. However, the scatter in the positions of the reporter group in the angular space turned out to correspond to the Gauss distrubution. Using the atomic coordinates of the spin label, obtained in a chosen time interval by the method of molecular dynamics, and taking into account the distribution of the states of the spin label in the ensemble of spin-labeled macromolecules in the crystal, we simulated the EPR spectra of monocrystals of spin-labeled lysozyme. The theoretical EPR spectra coincide well with the experimental.