Asymptotic stability and associated problems of dynamics of falling rigid body

被引:27
作者
Borisov, A. V.
Kozlov, V. V.
Mamaev, I. S.
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
rigid body; ideal fluid; non-holonomic mechanics;
D O I
10.1134/S1560354707050061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two problems from the rigid body dynamics and use new methods of stability and asymptotic behavior analysis for their solution. The first problem deals with motion of a rigid body in an unbounded volume of ideal fluid with zero vorticity. The second problem, having similar asymptotic behavior, is concerned with motion of a sleigh on an inclined plane. The equations of motion for the second problem are non-holonomic and exhibit some new features not typical for Hamiltonian systems. A comprehensive survey of references is given and new problems connected with falling motion of heavy bodies in fluid are proposed.
引用
收藏
页码:531 / 565
页数:35
相关论文
共 76 条
[11]   On the motion of a heavy rigid body in an ideal fluid with circulation [J].
Borisov, AV ;
Mamaev, IS .
CHAOS, 2006, 16 (01)
[12]   Motion of Chaplygin ball on an inclined plane [J].
Borisov, AV ;
Mamaev, IS .
DOKLADY PHYSICS, 2006, 51 (02) :73-76
[13]   Strange attractors in rattleback dynamics [J].
Borisov, AV ;
Mamaev, IS .
PHYSICS-USPEKHI, 2003, 46 (04) :393-403
[14]  
BORISOV AV, 2000, PRIKL MAT MEKH, P13
[15]  
BORISOV AV, 2005, DINAMIKA TVERDOGO TE
[16]  
BORISOV AV, 2006, P STEKLOV I MATH 200, V1, pS24
[17]   The carriage. [J].
Caratheodory, C .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1933, 13 :71-76
[18]  
Chaplygin S.A., 1948, COLLECT WORKS, V1, P337
[19]  
CHAPLYGIN SA, 1933, DOKL AKAD NAUK SSSR, V3, P311
[20]  
CHAPLYGIN SA, 1933, COMPLETE WORKS, V1, P1333