An Adaptive Correction Scheme for Offset-Free Asymptotic Performance in Deep Learning-based Economic MPC

被引:2
作者
Krishnamoorthy, Dinesh [1 ]
Mesbah, Ali [2 ]
Paulson, Joel A. [3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Chem Engn, NO-7491 Trondheim, Norway
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 03期
关键词
Approximate MPC; deep neural networks; probabilistic guarantees; adaptive correction; offset-free performance; MODEL-PREDICTIVE CONTROL; ALGORITHM; BOUNDS;
D O I
10.1016/j.ifaco1.2021.08.305
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There has been an increasing interest in explicit and cheap-to-evaluate control policies that approximate (computationally expensive) control laws such as model predictive control (MPC). However, approximate control policies are subject to approximation errors, leading to asymptotic performance losses. The contribution of this paper is three-fold: (i) a closed-loop training scheme is presented for deep neural network approximation of economic MPC; (ii) an online adaptive correction scheme is presented to account for the performance losses induced by approximation errors; and (iii) an offline performance verification scheme is presented to ensure that the approximate control policy converges to an equilibrium point of the system. The proposed approach is illustrated using a Williams-Otto reactor problem. Copyright (C) 2021 The Authors.
引用
收藏
页码:584 / 589
页数:6
相关论文
共 23 条
  • [1] Reachability Analysis of Nonlinear Systems with Uncertain Parameters using Conservative Linearization
    Althoff, Matthias
    Stursberg, Olaf
    Buss, Martin
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4042 - 4048
  • [2] Angeli D., 2011, IEEE T AUTOMATIC CON
  • [3] [Anonymous], 2013, THESIS ARENBERG DOCT
  • [4] UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION
    BARRON, AR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) : 930 - 945
  • [5] The explicit linear quadratic regulator for constrained systems
    Bemporad, A
    Morari, M
    Dua, V
    Pistikopoulos, EN
    [J]. AUTOMATICA, 2002, 38 (01) : 3 - 20
  • [6] Bertsekas D. P., 2019, Reinforcement and optimal control
  • [7] Support Vector Machine Informed Explicit Nonlinear Model Predictive Control Using Low-Discrepancy Sequences
    Chakrabarty, Ankush
    Dinh, Vu
    Corless, Martin J.
    Rundell, Ann E.
    Zak, Stanislaw H.
    Buzzard, Gregery T.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) : 135 - 148
  • [8] Chen S, 2018, P AMER CONTR CONF, P1520, DOI 10.23919/ACC.2018.8431275
  • [9] Explicit MPC-Based RBF Neural Network Controller Design With Discrete-Time Actual Kalman Filter for Semiactive Suspension
    Cseko, Lehel Huba
    Kvasnica, Michal
    Lantos, Bela
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (05) : 1736 - 1753
  • [10] A Lyapunov Function for Economic Optimizing Model Predictive Control
    Diehl, Moritz
    Amrit, Rishi
    Rawlings, James B.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (03) : 703 - 707