INVARIANTS OF AMPLE LINE BUNDLES ON PROJECTIVE VARIETIES AND THEIR APPLICATIONS, II

被引:8
作者
Fukuma, Yoshiaki [1 ]
机构
[1] Kochi Univ, Dept Math, Fac Sci, Kochi 7808520, Japan
基金
日本学术振兴会;
关键词
Polarized varieties; ample line bundles; nef and big line bundles; sectional genus; ith sectional geometric genus; ith sectional H-arithmetic genus; ith sectional arithmetic genus; adjoint bundles; QUASI-POLARIZED VARIETIES; SECTIONAL GEOMETRIC GENUS; VECTOR-BUNDLES; GENERALIZED ADJUNCTION; CURVE GENUS; MANIFOLDS; 3-FOLDS; CONE;
D O I
10.2996/kmj/1288962551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth complex projective variety of dimension n and let L-1,..., Ln-i be ample line bundles on X, where i is an integer with 0 <= i <= n - 1. In the previous paper, we defined the i-th sectional geometric genus g(i)(X, L-1,..., Ln-i) of (X, L-1 ,..., Ln-i). In this part II. we will investigate a lower bound for g(i)(X, L-1,..., Ln-i). Moreover we will study the first sectional geometric genus of (X, L-1,..., Ln-1).
引用
收藏
页码:416 / 445
页数:30
相关论文
共 28 条
[21]   THE CONE THEOREM - NOTE [J].
KOLLAR, J .
ANNALS OF MATHEMATICS, 1984, 120 (01) :1-5
[22]  
Kollar J., 1995, Shafarevich Maps and Automorphic Forms
[23]   Ample and spanned vector bundles of minimal curve genus [J].
Lanteri, A ;
Maeda, H ;
Sommese, AJ .
ARCHIV DER MATHEMATIK, 1996, 66 (02) :141-149
[24]   Ample vector bundles of small curve genera [J].
Maeda, H .
ARCHIV DER MATHEMATIK, 1998, 70 (03) :239-243
[25]   THREEFOLDS WHOSE CANONICAL BUNDLES ARE NOT NUMERICALLY EFFECTIVE [J].
MORI, S .
ANNALS OF MATHEMATICS, 1982, 116 (01) :133-176
[26]   FANO MANIFOLDS AND VECTOR-BUNDLES [J].
PETERNELL, T ;
SZUREK, M ;
WISNIEWSKI, JA .
MATHEMATISCHE ANNALEN, 1992, 294 (01) :151-165
[27]   LENGTH OF EXTREMAL RAYS AND GENERALIZED ADJUNCTION [J].
WISNIEWSKI, JA .
MATHEMATISCHE ZEITSCHRIFT, 1989, 200 (03) :409-427
[28]   ON AMPLE VECTOR-BUNDLES WHOSE ADJUNCTION BUNDLES ARE NOT NUMERICALLY EFFECTIVE [J].
YE, YG ;
ZHANG, Q .
DUKE MATHEMATICAL JOURNAL, 1990, 60 (03) :671-687