A hardware implementation of artificial neural networks using field programmable gate arrays

被引:19
|
作者
Won, E. [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 136713, South Korea
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2007年 / 581卷 / 03期
关键词
artificial neural network; FPGA; VHDL; level; 1; trigger;
D O I
10.1016/j.nima.2007.08.163
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An artificial neural network algorithm is implemented using a low-cost field programmable gate array hardware. One hidden layer is used in the feed-forward neural network structure in order to discriminate one class of patterns from the other class in real time. In this work, the training of the network is performed in the off-line computing environment and the results of the training are configured to the hardware in order to minimize the latency of the neural computation. With five 8-bit input patterns, six hidden nodes, and one 8-bit output, the implemented hardware neural network makes decisions on a set of input patterns in I I clock cycles, or less than 200 ns with a 60MHz clock. The result from the hardware neural computation is well predictable based on the off-line computation. This implementation may be used in level I hardware triggers in high energy physics experiments. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:816 / 820
页数:5
相关论文
共 50 条
  • [41] Design application-specific digital controllers using field programmable gate arrays
    Niu, JY
    Fleming, PJ
    Thompson, HA
    INTELLIGENT CONTROL SYSTEMS AND SIGNAL PROCESSING 2003, 2003, : 359 - 364
  • [42] Power Aware Architecture Exploration for Field Programmable Gate Arrays
    Goeders, Jeffrey B.
    Wilton, Steven J. E.
    JOURNAL OF LOW POWER ELECTRONICS, 2014, 10 (03) : 297 - 312
  • [43] Detection of Crosstalk Faults in Field Programmable Gate Arrays (FPGA)
    Das N.
    Roy P.
    Rahaman H.
    Journal of The Institution of Engineers (India): Series B, 2015, 96 (03) : 227 - 236
  • [44] Interconnect Solutions for Virtualized Field-Programmable Gate Arrays
    Yazdanshenas, Sadegh
    Betz, Vaughn
    IEEE ACCESS, 2018, 6 : 10497 - 10507
  • [45] Progress in Autonomous Fault Recovery of Field Programmable Gate Arrays
    Parris, Matthew G.
    Sharma, Carthik A.
    Demara, Ronald F.
    ACM COMPUTING SURVEYS, 2011, 43 (04)
  • [46] Field programmable gate array implementation of a neural network-based intelligent sensor system
    Patra, Jagdish C.
    Lee, Han Yang
    Meher, Pramod K.
    Ang, Ee Luang
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1063 - +
  • [47] Implementing Neural Network-Based Equalizers in a Coherent Optical Transmission System Using Field-Programmable Gate Arrays
    Freire, Pedro J.
    Srivallapanondh, Sasipim
    Anderson, Michael
    Spinnler, Bernhard
    Bex, Thomas
    Eriksson, Tobias A.
    Napoli, Antonio
    Schairer, Wolfgang
    Costa, Nelson
    Blott, Michaela
    Turitsyn, Sergei K.
    Prilepsky, Jaroslaw E.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (12) : 3797 - 3815
  • [48] Methods for improving the implementation of advanced encryption standard hardware accelerator on field programmable gate array-A survey
    Renugadevi, N.
    Thangallapally, Shirisha
    Vemula, Sai Charan
    Julakanti, Stheya
    Bhatnagar, Somya
    SECURITY AND PRIVACY, 2022, 5 (06):
  • [49] Artificial Neural Networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on Field Programmable Gate Array
    Yilmaz, Ceyhun
    Koyuncu, Ismail
    Alcin, Murat
    Tuna, Murat
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (33) : 17443 - 17459
  • [50] Digital Hardware Implementation of Lightweight Cryptography Algorithm Using Neural Networks
    Feizi, Soheil
    Nemati, Ali
    Haghiri, Saeed
    Ahmadi, Arash
    Seif, Mehrdad
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 490 - 496