A hardware implementation of artificial neural networks using field programmable gate arrays

被引:19
|
作者
Won, E. [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 136713, South Korea
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2007年 / 581卷 / 03期
关键词
artificial neural network; FPGA; VHDL; level; 1; trigger;
D O I
10.1016/j.nima.2007.08.163
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An artificial neural network algorithm is implemented using a low-cost field programmable gate array hardware. One hidden layer is used in the feed-forward neural network structure in order to discriminate one class of patterns from the other class in real time. In this work, the training of the network is performed in the off-line computing environment and the results of the training are configured to the hardware in order to minimize the latency of the neural computation. With five 8-bit input patterns, six hidden nodes, and one 8-bit output, the implemented hardware neural network makes decisions on a set of input patterns in I I clock cycles, or less than 200 ns with a 60MHz clock. The result from the hardware neural computation is well predictable based on the off-line computation. This implementation may be used in level I hardware triggers in high energy physics experiments. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:816 / 820
页数:5
相关论文
共 50 条
  • [31] FFT implementation for electronic holograms using field programmable gate array
    Atoche, A. Castillo
    Cortes, M. Perez
    Castillo, J. Vazquez
    Ensenat, R. Atoche
    PROCEEDINGS OF THE 6TH INTERNATIONAL CARIBBEAN CONFERENCE ON DEVICES, CIRCUITS, AND SYSTEMS, 2006, : 115 - +
  • [32] DBPM signal processing with field programmable gate arrays
    Lai Longwei
    Leng Yongbin
    Yi Xing
    Yan Yingbing
    Zhang Ning
    Yang Guisen
    Wang Baopeng
    Xiong Yun
    NUCLEAR SCIENCE AND TECHNIQUES, 2011, 22 (03) : 129 - 133
  • [33] A VARIABLE-PRECISION SQUARE-ROOT IMPLEMENTATION FOR FIELD-PROGRAMMABLE GATE ARRAYS
    LOUIE, ME
    ERCEGOVAC, MD
    JOURNAL OF SUPERCOMPUTING, 1995, 9 (03): : 315 - 336
  • [34] DBPM signal processing with field programmable gate arrays
    LAI Longwei~(1
    NuclearScienceandTechniques, 2011, 22 (03) : 129 - 133
  • [35] Are Field-Programmable Gate Arrays Ready for the Mainstream?
    Stitt, Greg
    IEEE MICRO, 2011, 31 (06) : 58 - 63
  • [36] Upgrading Obsolete Integrated Circuits using Field Programmable Gate Arrays (FPGA)
    Thompson, Conchetta
    2014 IEEE AUTOTESTCON, 2014,
  • [37] Field-Programmable Gate Array Architecture for the Discrete Orthonormal Stockwell Transform (DOST) Hardware Implementation
    Valtierra-Rodriguez, Martin
    Contreras-Hernandez, Jose-Luis
    Granados-Lieberman, David
    Rivera-Guillen, Jesus Rooney
    Amezquita-Sanchez, Juan Pablo
    Camarena-Martinez, David
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2024, 14 (03)
  • [38] Compact yet efficient hardware implementation of artificial neural networks with customized topology
    Nedjah, Nadia
    da Silva, Rodrigo Martins
    Mourelle, Luiza de Macedo
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9191 - 9206
  • [39] IMPLEMENTATION OF GENERALIZED DFT ON FIELD PROGRAMMABLE GATE ARRAY
    Weydig, Wes P.
    Torun, Mustafa U.
    Akansu, Ali N.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1709 - 1712
  • [40] Power-Optimized Field-Programmable Gate Array Implementation of Neural Activation Functions Using Continued Fractions for AI/ML Workloads
    Hingu, Chanakya
    Fu, Xingang
    Saliyu, Taofiki
    Hu, Rui
    Mishan, Ramkrishna
    ELECTRONICS, 2024, 13 (24):