Graph network based deep learning of bandgaps

被引:15
作者
Li, Xiang-Guo [1 ]
Blaiszik, Ben [2 ,3 ]
Schwarting, Marcus Emory [2 ,3 ]
Jacobs, Ryan [1 ]
Scourtas, Aristana [2 ,3 ]
Schmidt, K. J. [2 ,3 ]
Voyles, Paul M. [1 ]
Morgan, Dane [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[2] Univ Chicago, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
PEROVSKITES; PREDICTION; GAP;
D O I
10.1063/5.0066009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent machine learning models for bandgap prediction that explicitly encode the structure information to the model feature set significantly improve the model accuracy compared to both traditional machine learning and non-graph-based deep learning methods. The ongoing rapid growth of open-access bandgap databases can benefit such model construction not only by expanding their domain of applicability but also by requiring constant updating of the model. Here, we build a new state-of-the-art multi-fidelity graph network model for bandgap prediction of crystalline compounds from a large bandgap database of experimental and density functional theory (DFT) computed bandgaps with over 806 600 entries (1500 experimental, 775 700 low-fidelity DFT, and 29 400 high-fidelity DFT). The model predicts bandgaps with a 0.23 eV mean absolute error in cross validation for high-fidelity data, and including the mixed data from all different fidelities improves the prediction of the high-fidelity data. The prediction error is smaller for high-symmetry crystals than for low symmetry crystals. Our data are published through a new cloud-based computing environment, called the "Foundry," which supports easy creation and revision of standardized data structures and will enable cloud accessible containerized models, allowing for continuous model development and data accumulation in the future. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 44 条
[1]   A data ecosystem to support machine learning in materials science [J].
Blaiszik, Ben ;
Ward, Logan ;
Schwarting, Marcus ;
Gaff, Jonathon ;
Chard, Ryan ;
Pike, Daniel ;
Chard, Kyle ;
Foster, Ian .
MRS COMMUNICATIONS, 2019, 9 (04) :1125-1133
[2]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[3]   New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations [J].
Castelli, Ivano E. ;
Huser, Falco ;
Pandey, Mohnish ;
Li, Hong ;
Thygesen, Kristian S. ;
Seger, Brian ;
Jain, Anubhav ;
Persson, Kristin A. ;
Ceder, Gerbrand ;
Jacobsen, Karsten W. .
ADVANCED ENERGY MATERIALS, 2015, 5 (02)
[4]   Bandgap calculations and trends of organometal halide perovskites [J].
Castelli, Ivano E. ;
Garcia-Lastra, Juan Maria ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
APL MATERIALS, 2014, 2 (08)
[5]   New cubic perovskites for one- and two-photon water splitting using the computational materials repository [J].
Castelli, Ivano E. ;
Landis, David D. ;
Thygesen, Kristian S. ;
Dahl, Soren ;
Chorkendorff, Ib ;
Jaramillo, Thomas F. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9034-9043
[6]   Learning properties of ordered and disordered materials from multi-fidelity data [J].
Chen, Chi ;
Zuo, Yunxing ;
Ye, Weike ;
Li, Xiangguo ;
Ong, Shyue Ping .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (01) :46-+
[7]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]   The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design [J].
Choudhary, Kamal ;
Garrity, Kevin F. ;
Reid, Andrew C. E. ;
DeCost, Brian ;
Biacchi, Adam J. ;
Hight Walker, Angela R. ;
Trautt, Zachary ;
Hattrick-Simpers, Jason ;
Kusne, A. Gilad ;
Centrone, Andrea ;
Davydov, Albert ;
Jiang, Jie ;
Pachter, Ruth ;
Cheon, Gowoon ;
Reed, Evan ;
Agrawal, Ankit ;
Qian, Xiaofeng ;
Sharma, Vinit ;
Zhuang, Houlong ;
Kalinin, Sergei V. ;
Sumpter, Bobby G. ;
Pilania, Ghanshyam ;
Acar, Pinar ;
Mandal, Subhasish ;
Haule, Kristjan ;
Vanderbilt, David ;
Rabe, Karin ;
Tavazza, Francesca .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[10]   AFLOW: An automatic framework for high-throughput materials discovery [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Hart, Gus L. W. ;
Jahnatek, Michal ;
Chepulskii, Roman V. ;
Taylor, Richard H. ;
Wanga, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Levy, Ohad ;
Mehl, Michael J. ;
Stokes, Harold T. ;
Demchenko, Denis O. ;
Morgan, Dane .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :218-226