Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction

被引:35
|
作者
Ye, Jihua [1 ]
Xue, Shengjun [1 ]
Jiang, Aiwen [1 ]
机构
[1] Jiangxi Normal Univ, Sch Comp & Informat Engn, Nanchang 330022, Jiangxi, Peoples R China
关键词
Multi-step traffic flow prediction; Graph convolutional network; External factors; Attentional encoder network; Spatiotemporal correlation;
D O I
10.1016/j.dcan.2021.09.007
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%-8.7% higher than the state-of-the-art baselines.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条
  • [1] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [2] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [3] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225
  • [4] A Freeway Traffic Flow Prediction Model Based on a Generalized Dynamic Spatio-Temporal Graph Convolutional Network
    Gan, Rui
    An, Bocheng
    Li, Linheng
    Qu, Xu
    Ran, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13682 - 13693
  • [5] Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction
    Xu, Yuanbo
    Cai, Xiao
    Wang, En
    Liu, Wenbin
    Yang, Yongjian
    Yang, Funing
    INFORMATION SCIENCES, 2023, 621 : 580 - 595
  • [6] Deep spatio-temporal graph convolutional network for traffic accident prediction
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Han, Liangzhe
    Lv, Weifeng
    NEUROCOMPUTING, 2021, 423 (423) : 135 - 147
  • [7] Spatio-temporal fusion graph convolutional network for traffic flow forecasting
    Ma, Ying
    Lou, Haijie
    Yan, Ming
    Sun, Fanghui
    Li, Guoqi
    INFORMATION FUSION, 2024, 104
  • [8] A traffic flow-forecasting model based on multi-head spatio-temporal attention and adaptive graph convolutional networks
    Zhang, Hong
    Kan, Sunan
    Cao, Jie
    Chen, Linlong
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (10):
  • [9] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [10] Robust Traffic Prediction Using Probabilistic Spatio-Temporal Graph Convolutional Network
    Karim, Atkia Akila
    Nower, Naushin
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 259 - 273