Full waveform inversion in fractured media based on velocity-stress wave equations in the time domain

被引:3
作者
Wang, Kang [1 ]
Peng, Suping [1 ]
Lu, Yongxu [1 ]
Cui, Xiaoqin [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
Numerical modelling; Waveform inversion; Wave propagation; PROPAGATION; ANISOTROPY; GRADIENT; MODEL; LAYER;
D O I
10.1093/gji/ggab243
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the process of seismic wave propagation, the presence of fractures will cause a seismic wave response associated with fracture compliance. Full waveform inversion (FWI) is an effective way to quantitatively obtain fracture compliance values, which can simulate seismic wave propagation in a fractured medium and compute the gradient expression of the fracture compliance parameters. To obtain the fracture compliance parameters quantitatively, a new technique based on FWI needs to be proposed. Based on linear slip theory, a new finite-difference scheme using a rotated grid has been developed to simulate the propagation of seismic waves in fractured media. The corresponding adjoint equation for FWI and the gradient of fracture parameter expression are presented. The crosstalk between normal compliance and tangential compliance is analysed in a homogeneous background medium. Numerical simulations in double-layer media show that the new gradient equation is effective.
引用
收藏
页码:1060 / 1075
页数:16
相关论文
共 50 条
[31]   Time domain Gauss-Newton seismic waveform inversion in elastic media [J].
Sheen, Dong-Hoon ;
Tuncay, Kagan ;
Baag, Chang-Eob ;
Ortoleva, Peter J. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 167 (03) :1373-1384
[32]   Iterative passive-source location estimation and velocity inversion using geometric-mean reverse-time migration and full-waveform inversion [J].
Lyu, Bin ;
Nakata, Non .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 223 (03) :1935-1947
[33]   Imaging the P-Wave Velocity Structure of Arctic Subsea Permafrost Using Laplace-Domain Full-Waveform Inversion [J].
Kang, Seung-Goo ;
Jin, Young Keun ;
Jang, Ugeun ;
Duchesne, Mathieu J. ;
Shin, Changsoo ;
Kim, Sookwan ;
Riedel, Michael ;
Dallimore, Scott R. ;
Paull, Charles K. ;
Choi, Yeonjin ;
Hong, Jong Kuk .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2021, 126 (03)
[34]   A novel full waveform inversion method based on a time-shift nonlinear operator [J].
Gao, Zhaoqi ;
Pan, Zhibin ;
Gao, Jinghuai ;
Wu, Ru-Shan .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 208 (03) :1672-1689
[35]   Robust source-independent elastic full-waveform inversion in the time domain [J].
Zhang, Qingchen ;
Zhou, Hui ;
Li, Qingqing ;
Chen, Hanming ;
Wang, Jie .
GEOPHYSICS, 2016, 81 (02) :R29-R44
[36]   Time-domain full waveform inversion using instantaneous phase information with damping [J].
Luo, Jingrui ;
Wu, Ru-Shan ;
Gao, Fuchun .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (03) :1032-1041
[37]   Full Waveform Inversion of Viscoelastic Media Based on P-S Separation [J].
Xu, Yipeng ;
Zhang, Kai ;
He, Zilin ;
Li, Zhenchun ;
Gao, Jinfeng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[38]   Full waveform inversion based on time-integral-damping wavefield [J].
Chen, Sheng-Chang ;
Chen, Guo-Xin .
JOURNAL OF APPLIED GEOPHYSICS, 2019, 163 :84-95
[39]   METHODOLOGY OF TIME-LAPSE ELASTIC FULL-WAVEFORM INVERSION FOR VTI MEDIA [J].
Liu, Yanhua ;
Tsvankin, Ilya .
JOURNAL OF SEISMIC EXPLORATION, 2021, 30 (03) :257-270
[40]   Time-domain poroelastic full-waveform inversion of shallow seismic data: methodology and sensitivity analysis [J].
Liu, Tingting ;
Bohlen, Thomas .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 232 (03) :1803-1820