A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images

被引:78
|
作者
Pinto, Miguel M. [1 ]
Libonati, Renata [1 ,2 ,3 ]
Trigo, Ricardo M. [1 ,2 ]
Trigo, Isabel F. [4 ]
DaCamara, Carlos C. [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, IDL, P-1749016 Lisbon, Portugal
[2] Univ Fed Rio de Janeiro, Inst Geociencias, Dept Meteorol, BR-21941916 Rio De Janeiro, Brazil
[3] Univ Lisbon, Ctr Estudos Florestais, P-1349017 Lisbon, Portugal
[4] IPMA, Dept Meteorol & Geofis, P-1749077 Lisbon, Portugal
关键词
Burned areas; Wildfires; VIIRS; Segmentation; Deep learning; Computer vision; CONVOLUTIONAL NEURAL-NETWORKS; REMOTE-SENSING IMAGERY; FIRE EMISSIONS; ALGORITHM; PRODUCTS; CLASSIFICATION; REFLECTANCE; ACCURACY; CLIMATE;
D O I
10.1016/j.isprsjprs.2019.12.014
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Over the past decades, methods for burned areas mapping and dating from remote sensing imagery have been the object of extensive research. The limitations of current methods, together with the heavy pre-processing of input data they require, make them difficult to improve or apply to different satellite sensors. Here, we explore a deep learning approach based on daily sequences of multi-spectral images, as a promising and flexible technique that can be applicable to observations with various spatial and spectral resolutions. We test the proposed model for five regions around the globe using input data from VIIRS 750 m bands resampled to a 0.01 degrees spatial resolution grid. The derived burned areas are validated against higher resolution reference maps and compared with the MCD64A1 Collection 6 and FireCCI51 global burned area datasets. We show that the proposed methodology achieves competitive results in the task of burned areas mapping, despite using lower spatial resolution observations than the two global datasets. Furthermore, we improve the task of burned areas dating for the considered regions of study when compared with state-of-the-art products. We also show that our model can be used to map burned areas for low burned fraction levels and that it can operate in near-real-time, converging to the final solution in only a few days. The obtained results are a strong indication of the advantage of deep learning approaches for the problem of mapping and dating of burned areas and provide several routes for future research.
引用
收藏
页码:260 / 274
页数:15
相关论文
共 50 条
  • [41] Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images
    Smiraglia, Daniela
    Filipponi, Federico
    Mandrone, Stefania
    Tornato, Antonella
    Taramelli, Andrea
    REMOTE SENSING, 2020, 12 (11)
  • [42] Segmentation of Satellite Images of Solar Panels Using Fast Deep Learning Model
    Wani, M. Arif
    Mujtaba, Tahir
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2021, 11 (01): : 31 - 45
  • [43] Comparative analysis of mapping burned areas from landsat TM images
    Mazher, A.
    6TH VACUUM AND SURFACE SCIENCES CONFERENCE OF ASIA AND AUSTRALIA (VASSCAA-6), 2013, 439
  • [44] A multi-temporal dataset for mapping burned areas in the Brazilian Cerrado using time series of remote sensing imagery
    de Oliveira, Alisson Cleiton
    Sehn Koerting, Thales
    BIG EARTH DATA, 2025,
  • [45] A new approach for crop type mapping in satellite images using hybrid deep capsule auto encoder
    Venkatanaresh, M.
    Kullayamma, I.
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [46] Deforestation detection using a spatio-temporal deep learning approach with synthetic aperture radar and multispectral images
    Solorzano, Jonathan, V
    Francois Mas, Jean
    Alberto Gallardo-Cruz, J.
    Gao, Yan
    Fernandez-Montes de Oca, Ana
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 87 - 101
  • [47] MAPPING SLUMS FROM SATELLITE IMAGERY USING DEEP LEARNING
    Raj, Anjali
    Agrawal, Shubham
    Mitra, Adway
    Sinha, Manjira
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6584 - 6587
  • [48] Using Deep Learning on Satellite Images to Identify Deforestation/Afforestation
    Mhatre, Apurva
    Mudaliar, Navin Kumar
    Narayanan, Mahadevan
    Gurav, Aaditya
    Nair, Ajun
    Nair, Akash
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1078 - 1084
  • [49] WINDMILLS DETECTION USING DEEP LEARNING ON SENTINEL SATELLITE IMAGES
    Tertre, M.
    Laurencot, T.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 197 - 203
  • [50] Automated breast cancer segmentation and classification in mammogram images using deep learning approach
    Dhanalaxmi, B.
    Venkatesh, N.
    Raju, Yeligeti
    Naik, G. Jagan
    Rao, Channapragada Rama Seshagiri
    Tulasi, V. Prema
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2025, 47 (02) : 165 - 193