A quantitative performance study of two automatic methods for the diagnosis of ovarian cancer

被引:20
作者
Vazquez, Manuel A. [1 ,2 ]
Marino, Ines P. [3 ,4 ]
Blyuss, Oleg [4 ,5 ]
Ryan, Andy [4 ]
Gentry-Maharaj, Aleksandra [4 ]
Kalsi, Jatinderpal [4 ]
Manchandada, Ranjit [4 ,6 ]
Jacobs, Ian [4 ,7 ,8 ]
Menon, Usha [4 ]
Zaikin, Alexey [4 ,9 ,10 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid 28911, Spain
[2] Gregorio Maranon Hlth Res Inst, Madrid 28009, Spain
[3] Univ Rey Juan Carlos, Dept Biol & Geol Phys & Inorgan Chem, Madrid 28933, Spain
[4] UCL, Inst Womens Hlth, Dept Womens Canc, London WC1E 6BT, England
[5] Queen Mary Univ London, Ctr Canc Prevent, Wolfson Inst Prevent Med, London EC1M 6BQ, England
[6] Queen Mary Univ London, Barts Canc Inst, London EC1M 6BQ, England
[7] Univ Manchester, Fac Med & Human Sci, Manchester M13 9NT, Lancs, England
[8] UNSW Sydney, Fac Med, Sydney, NSW 2052, Australia
[9] UCL, Dept Math, London WC1H 0AY, England
[10] Lobachevsky State Univ Nizhny Novgorod, Dept Appl Math, Nizhnii Novgorod, Russia
基金
英国医学研究理事会;
关键词
Ovarian cancer; Biomarkers; Deep learning; Recurrent neural networks; Markov chain; Monte Carlo; Gibbs sampling; Change-point detection; Bayesian estimation; CA125; WOMEN; HE-4; BIOMARKERS; MULTIPLE; RISK; PROSTATE; LUNG;
D O I
10.1016/j.bspc.2018.07.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a quantitative study of the performance of two automatic methods for the early detection of ovarian cancer that can exploit longitudinal measurements of multiple biomarkers. The study is carried out for a subset of the data collected in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). We use statistical analysis techniques, such as the area under the Receiver Operating Characteristic (ROC) curve, for evaluating the performance of two techniques that aim at the classification of subjects as either healthy or suffering from the disease using time-series of multiple biomarkers as inputs. The first method relies on a Bayesian hierarchical model that establishes connections within a set of clinically interpretable parameters. The second technique is a purely discriminative method that employs a recurrent neural network (RNN) for the binary classification of the inputs. For the available dataset, the performance of the two detection schemes is similar (the area under ROC curve is 0.98 for the combination of three biomarkers) and the Bayesian approach has the advantage that its outputs (parameters estimates and their uncertainty) can be further analysed by a clinical expert. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 34 条
  • [1] Assessing Lead Time of Selected Ovarian Cancer Biomarkers: A Nested Case-Control Study
    Anderson, Garnet L.
    McIntosh, Martin
    Wu, Lieling
    Barnett, Matt
    Goodman, Gary
    Thorpe, Jason D.
    Bergan, Lindsay
    Thornquist, Mark D.
    Scholler, Nathalie
    Kim, Nam
    O'Briant, Kathy
    Drescher, Charles
    Urban, Nicole
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2010, 102 (01): : 26 - 38
  • [2] [Anonymous], 2007, INT C NEUR INF PROC
  • [3] [Anonymous], 2013, ARXIV13126120
  • [4] [Anonymous], 2017, ARXIV170106675
  • [5] Bischof A, 2005, ANTICANCER RES, V25, P1639
  • [6] Comparison of Longitudinal CA125 Algorithms as a First-Line Screen for Ovarian Cancer in the General Population
    Blyuss, Oleg
    Burnell, Matthew
    Ryan, Andy
    Gentry-Maharaj, Aleksandra
    Marino, Ines P.
    Kalsi, Jatinderpal
    Manchanda, Ranjit
    Timms, John F.
    Parmar, Mahesh
    Skates, Steven J.
    Jacobs, Ian
    Zaikin, Alexey
    Menon, Usha
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (19) : 4726 - 4733
  • [7] Serial Patterns of Ovarian Cancer Biomarkers in a Prediagnosis Longitudinal Dataset
    Blyuss, Oleg
    Gentry-Maharaj, Alex
    Fourkala, Evangelia-Orania
    Ryan, Andy
    Zaikin, Alexey
    Menon, Usha
    Jacobs, Ian
    Timms, John F.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [8] Screening for ovarian cancer by transvaginal ultrasound and serum CA125 measurement in women with a familial predisposition: A prospective cohort study
    Bosse, Kristin
    Rhiem, Kerstin
    Wappenschmidt, Barbara
    Hellmich, Martin
    Madeja, Martin
    Ortmann, Monika
    Mallmann, Peter
    Schmutzler, Rita
    [J]. GYNECOLOGIC ONCOLOGY, 2006, 103 (03) : 1077 - 1082
  • [9] Effect of Screening on Ovarian Cancer Mortality The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial
    Buys, Saundra S.
    Partridge, Edward
    Black, Amanda
    Johnson, Christine C.
    Lamerato, Lois
    Isaacs, Claudine
    Reding, Douglas J.
    Greenlee, Robert T.
    Yokochi, Lance A.
    Kessel, Bruce
    Crawford, E. David
    Church, Timothy R.
    Andriole, Gerald L.
    Weissfeld, Joel L.
    Fouad, Mona N.
    Chia, David
    O'Brien, Barbara
    Ragard, Lawrence R.
    Clapp, Jonathan D.
    Rathmell, Joshua M.
    Riley, Thomas L.
    Hartge, Patricia
    Pinsky, Paul F.
    Zhu, Claire S.
    Izmirlian, Grant
    Kramer, Barnett S.
    Miller, Anthony B.
    Xu, Jian-Lun
    Prorok, Philip C.
    Gohagan, John K.
    Berg, Christine D.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (22): : 2295 - 2303
  • [10] Using recurrent neural network models for early detection of heart failure onset
    Choi, Edward
    Schuetz, Andy
    Stewart, Walter F.
    Sun, Jimeng
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (02) : 361 - 370