Complex integrability and linearizability of cubic Z2-equivariant systems with two 1:q resonant singular points

被引:28
作者
Li, Feng [1 ]
Liu, Yuanyuan [1 ]
Yu, Pei [2 ]
Wang, Jinliang [3 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
[2] Western Univ, Dept Appl Math, London, ON N6A 5B7, Canada
[3] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Integrability; Linearizability; Saddle value; Periodic constant; Resonant node; BI-CENTER PROBLEM; 12; LIMIT-CYCLES;
D O I
10.1016/j.jde.2021.08.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, complex integrability and linearizability of cubic Z(2)-equivariant systems with two 1 :q resonant singular points are investigated, and the necessary and sufficient conditions on complex integrability and linearizability of the systems with two 1: (- q) resonant saddles are obtained for q = 1, 2, 3, 4. Moreover, for general positive integer q, the complex integrability and linearizability conditions are classified, and the sufficiency of the conditions is proved. Further, the linearizability conditions of cubic Z(2)-equivariant systems with two 1:q resonant node points are also classified. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:786 / 813
页数:28
相关论文
共 37 条
[1]   The center problem for Z2-symmetric nilpotent vector fields [J].
Algaba, Antonio ;
Garcia, Cristobal ;
Gine, Jaume ;
Llibre, Jaume .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :183-198
[2]  
Amel'kin V. V., 1982, NONLINEAR OSCILLATIO
[3]  
Chaoxiong Du, 2017, Nonlinear Dynamics, V87, P1235, DOI 10.1007/s11071-016-3112-7
[4]  
Chen L, 1979, Acta Math Sinica (Chin Ser), V22, P751
[5]   The 1: -q resonant center problem for certain cubic Lotka-Volterra systems [J].
Chen, Xingwu ;
Gine, Jaume ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11620-11633
[6]  
Christopher C, 2003, J DYN CONTROL SYST, V9, P311, DOI 10.1023/A:1024643521094
[7]  
Fronville A, 1998, FUND MATH, V157, P191
[8]   Analytic nilpotent centers as limits of nondegenerate centers revisited [J].
Garcia, Isaac A. ;
Giacomini, Hector ;
Gine, Jaume ;
Llibre, Jaume .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) :893-899
[9]   The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems (vol 227, pg 406, 2006) [J].
Giacomini, Hector ;
Gine, Jaume ;
Llibre, Jaume .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :702-702
[10]   Simultaneity of centres in Zq-equivariant systems [J].
Gine, Jaume ;
Llibre, Jaume ;
Valls, Claudia .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2213)