New Bounds on the Total-Squared-Correlation of Quaternary Signature Sets and Optimal Designs

被引:0
|
作者
Li, Ming [1 ]
Batalama, Stella N. [1 ]
Pados, Dimitris A. [1 ]
Matyjas, John D. [2 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Air Force Res Lab, RIGE, Griffiss AFB, NY 13441 USA
来源
GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8 | 2009年
关键词
Code-division multiplexing; quaternary alphabet; sequences; Welch bound; KARYSTINOS-PADOS BOUNDS; DS-CDMA; INTERFERENCE AVOIDANCE; WIRELESS SYSTEMS; SUM CAPACITY; SEQUENCES; MATRICES; WELCH;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive new bounds on the total squared correlation (TSC) of quaternary (quadriphase) signature/sequence sets for all lengths L and set sizes K. Then, for all K, L, we design minimum-TSC optimal sets that meet the new bounds with equality. Direct numerical comparison with the TSC value of the recently obtained optimal binary sets shows under what K,L realizations gains are materialized by moving from the binary to the quaternary code-division multiplexing alphabet. On the other hand, comparison with the Welch TSC value for real/complex-field sets shows that, arguably, not much is to be gained by raising the alphabet size above four for any K, L.
引用
收藏
页码:6328 / +
页数:2
相关论文
共 10 条
  • [1] Minimum Total-Squared-Correlation Quaternary Signature Sets: New Bounds and Optimal Designs
    Li, Ming
    Batalama, Stella N.
    Pados, Dimitris A.
    Matyjas, John D.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (12) : 3662 - 3671
  • [2] New Bounds and Optimal Binary Signature Sets-Part I: Periodic Total Squared Correlation
    Ganapathy, Harish
    Pados, Dimitris A.
    Karystinos, George N.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (04) : 1123 - 1132
  • [3] New Bounds and Optimal Binary Signature Sets-Part II: Aperiodic Total Squared Correlation
    Ganapathy, Harish
    Pados, Dimitris A.
    Karystinos, George N.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (05) : 1411 - 1420
  • [4] The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum, total-squared-correlation binary signature sets
    Karystinos, GN
    Pados, DA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 348 - 355
  • [5] Code division multiplexing performance of minimum total-squared-correlation binary signature sets
    Karystinos, GN
    Pados, DA
    GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, : 1862 - 1866
  • [6] Constructions of Binary Signature Sets With Optimal Odd Total Squared Correlation and Their Application to Device Activity Detection
    Liu, Bing
    Zhou, Zhengchun
    Yang, Yang
    Adhikary, Avik Ranjan
    Fan, Pingzhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 2084 - 2096
  • [7] Binary Signature Set with Optimal Odd Periodic Total Squared Correlation
    Yang, Yang
    Tang, Xiaohu
    Zhou, Zhengchun
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1555 - 1559
  • [8] New Extension Method of Quaternary Low Correlation Zone Sequence Sets
    Jang, Ji-Woong
    Kim, Young-Sik
    Kim, Sang-Hyo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (02) : 557 - 560
  • [9] New Construction of Quaternary Low Correlation Zone Sequence Sets from Binary Low Correlation Zone Sequence Sets
    Jang, Ji-Woong
    Kim, Sang-Hyo
    No, Jong-Seon
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2010, 12 (04) : 330 - 333
  • [10] New sets of optimal p-ary low-correlation zone sequences
    Jang, Ji-Woong
    No, Jong-Seon
    Chung, Habong
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) : 815 - 821