MODELLING OF GAS COOLER FOR S-CO2 BRAYTON POWER CYCLE

被引:0
作者
Pandey, Vivek [1 ]
Seshadri, Lakshminarayanan [1 ]
Gupta, Jayesh [2 ]
Mariayyah, Ravishankar [3 ]
Santhosh, Nagavally Lingappa [2 ]
Kumar, Pramod [1 ]
机构
[1] Indian Inst Sci, Bangalore 560012, Karnataka, India
[2] DHIO Res & Engn Private Ltd, Bangalore 560010, Karnataka, India
[3] Dassault Syst Private Ltd, Chennai 600017, Tamil Nadu, India
来源
PROCEEDINGS OF THE ASME GAS TURBINE INDIA CONFERENCE, 2019, VOL 2 | 2020年
关键词
S-CO2 Brayton cycle; Gas cooler; PCHE; Thermal Resistance Model; Flow admittance; Flownex SE; ISIGHT; HEAT-TRANSFER; PERFORMANCE; CONDUCTION; FINS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Supercritical Carbon dioxide (S-CO2) based Brayton power plants are being extensively researched as an alternative to steams-based power cycles due to high degree of recuperation favoured by higher heat capacities in supercritical state. Several studies revealed that PCHEs are suitable candidate for S-CO2 applications. Although, PCHEs have been well researched for various applications, there is very little information pertaining to the design or performance of PCHEs in S-CO2 applications. This paper presents a novel methodology for design of a PCHE as gas cooler for a S-CO2 power block. In the first part, a thermal resistance network (TRN) model developed using MATLAB is used for full scale modelling of gas cooler. The geometrical information obtained from TRN model is used to optimize the overall footprint. In the second part, the MATLAB code coupled with a 1-D design tool (Flownex SE) and an optimization software; Isight, is used to optimize the inlet-exit manifold based on flow admittance approach. The 1-D design tool discretizes the inlet-exit manifolds to achieve optimum combination of flow admittances which facilitates identical channel mass flow rate and inlet pressure across each channel/stack ensuring minimum overall pressure drop. In the current paper a case study for a 10 MW PCHE based gas cooler used in a simple recuperated S-CO2 cycle rejecting heat to ambient at 45 degrees C and 90 bar, is presented. The gas cooler uses water as the primary heat transfer maintained at 4 bar pressure to facilitate single phase heat transfer. Pinch temperature of 5 K is assumed to exist in all heat transfer surfaces. The MATLAB program is coupled with REFPROP property data base to retrieve the thermodynamic properties across all the nodes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation
    Yu, Guo-Peng
    Cheng, Yong-Feng
    Zhang, Na
    Ming, Ping-Jian
    NUCLEAR SCIENCE AND TECHNIQUES, 2024, 35 (02)
  • [42] Thermo-economic analysis and multi-objective optimization of S-CO2 Brayton cycle waste heat recovery system for an ocean-going 9000 TEU container ship
    Pan, Pengcheng
    Yuan, Chengqing
    Sun, Yuwei
    Yan, Xinping
    Lu, Mingjian
    Bucknall, Richard
    ENERGY CONVERSION AND MANAGEMENT, 2020, 221 (221)
  • [43] Thermo-economic analysis and multi-objective optimization of S-CO2 Brayton cycle waste heat recovery system for an ocean-going 9000 TEU container ship
    Pan, Pengcheng
    Yuan, Chengqing
    Sun, Yuwei
    Yan, Xinping
    Lu, Mingjian
    Bucknall, Richard
    ENERGY CONVERSION AND MANAGEMENT, 2020, 221
  • [44] Analysis of a novel combined cooling and power system by integrating of supercritical CO2 Brayton cycle and transcritical ejector refrigeration cycle
    Huang, Yulei
    Jiang, Peixue
    Zhu, Yinhai
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [45] Controllability of S-CO2 power system coupled small modular reactor with improved compressor design
    Oh, Bong Seong
    Jeong, Yongju
    Cho, Seong Kuk
    Lee, Jeong Ik
    APPLIED THERMAL ENGINEERING, 2021, 192
  • [46] A hybrid gas turbine cycle (Brayton/Ericsson): An alternative to conventional combined gas and steam turbine power plant
    Frost, TH
    Anderson, A
    Agnew, B
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 1997, 211 (02) : 121 - 131
  • [47] MICRO GAS TURBINE INTEGRATED WITH A SUPERCRITICAL CO2 BRAYTON CYCLE TURBINE: LAYOUT COMPARISON AND THERMODYNAMIC ANALYSIS
    Reale, Fabrizio
    Sannino, Raniero
    Tuccillo, Raffaele
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 8, 2020,
  • [48] Design of S-CO2 coal-fired power system based on the multiscale analysis platform
    Fan, Y. H.
    Yang, D. L.
    Tang, G. H.
    Sheng, Q.
    Li, X. L.
    ENERGY, 2022, 240
  • [49] Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle
    Park, SungHo
    Kim, JoonYoung
    Yoon, MunKyu
    Rhim, DongRyul
    Yeom, ChoongSub
    APPLIED THERMAL ENGINEERING, 2018, 130 : 611 - 623
  • [50] Mass optimization of a supercritical CO2 Brayton cycle with a direct cooled nuclear reactor for space surface power
    Sondelski, Becky
    Nellis, Greg
    APPLIED THERMAL ENGINEERING, 2019, 163