Anti-Yetter-Drinfeld Modules for Quasi-Hopf Algebras

被引:2
作者
Kobyzev, Ivan [1 ]
Shapiro, Ilya [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Windsor, Dept Math & Stat, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
monoidal category; cyclic homology; Hopf algebras; quasi-Hopf algebras; CYCLIC COHOMOLOGY; CATEGORIES; HOMOLOGY; THEOREM;
D O I
10.3842/SIGMA.2018.098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply categorical machinery to the problem of defining anti-Yetter-Drinfeld modules for quasi-Hopf algebras. While a definition of Yetter-Drinfeld modules in this setting, extracted from their categorical interpretation as the center of the monoidal category of modules has been given, none was available for the anti-Yetter-Drinfeld modules that serve as coefficients for a Hopf cyclic type cohomology theory for quasi-Hopf algebras. This is a followup paper to the authors' previous effort that addressed the somewhat different case of anti-Yetter-Drinfeld contramodule coefficients in this and in the Hopf algebroid setting.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Yetter-Drinfeld Modules for Group-Cograded Hopf Quasigroups [J].
Liu, Huili ;
Yang, Tao ;
Zhu, Lingli .
MATHEMATICS, 2022, 10 (09)
[22]   On sovereign, balanced and ribbon quasi-Hopf algebras [J].
Bulacu, Daniel ;
Torrecillas, Blas .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (03) :1064-1091
[23]   Monadic cointegrals and applications to quasi-Hopf algebras [J].
Berger, Johannes ;
Gainutdinov, Azat M. ;
Runkel, Ingo .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (10)
[24]   FREENESS OF QUASI-HOPF ALGEBRAS OVER RIGHT COIDEAL SUBALGEBRAS [J].
Henker, Hannah .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) :876-889
[25]   A Morita Context and Galois Extensions for Quasi-Hopf Algebras [J].
Balan, Adriana .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) :1129-1150
[26]   Basic quasi-Hopf algebras over cyclic groups [J].
Ezequiel Angiono, Ivan .
ADVANCES IN MATHEMATICS, 2010, 225 (06) :3545-3575
[27]   The Monoidal Category of Yetter-Drinfeld Modules over a Weak Braided Hopf Algebra [J].
Alonso Alvarez, J. N. ;
Fernandez Vilaboa, J. M. ;
Gonzalez Rodriguez, R. ;
Soneira Calvo, C. .
ALGEBRA COLLOQUIUM, 2015, 22 :871-902
[28]   THE STRUCTURE THEOREMS FOR YETTER-DRINFELD COMODULE ALGEBRAS [J].
Jia, Ling .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2013, 20 :31-42
[29]   Graded elementary quasi-Hopf algebras of tame representation type [J].
Hua-Lin Huang ;
Gongxiang Liu ;
Yu Ye .
Israel Journal of Mathematics, 2015, 209 :157-186
[30]   SL(2, Z)-action for ribbon quasi-Hopf algebras [J].
Farsad, V. ;
Gainutdinov, A. M. ;
Runkel, I. .
JOURNAL OF ALGEBRA, 2019, 522 :243-308