Organic electroluminescent devices have received considerable attention due to their application in flat-panel displays. To achieve full-color displays, it is necessary to obtain organic layers emitting red, green, and blue light, but it is still a challenge to obtain efficient and stable organic layer emitting red light so far. Recently, we found that an organic salt, traps-4-[p-[N-ethyl-N-(hydroxyethyl)amino]styryl]-N-methylphridinium tetraphenylborate (ASPT), exhibits efficient red-light emission. In this paper, we report a multilayer electrolumicescent device incorporating a hole-transport layer, an ASPT layer, and an electron-transport layer. The dependence of the carrier transport and the luminescence on the device structure is investigated in detail. Compared to the monolayer device, the balance between hole and electron injections is significantly improved for the multilayer device, and thus the electroluminescent efficiency and intensity are enhanced.