Electronic Stability Control Based on Motor Driving and Braking Torque Distribution for a Four In-Wheel Motor Drive Electric Vehicle

被引:288
|
作者
Zhai, Li [1 ,2 ]
Sun, Tianmin [1 ,2 ]
Wang, Jie [3 ]
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing Coinnovat Ctr Elect Vehicles, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[3] Foton Motor Inc, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric vehicle; electronic stability control (ESC); independent drive; in-wheel motor; torque distribution;
D O I
10.1109/TVT.2016.2526663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An electronic stability control ( ESC) algorithm is proposed for a four in-wheel motor independent-drive electric vehicle ( 4MIDEV) utilizing motor driving and regenerative braking torque distribution control to improve vehicle stability. A stability judgment controller, an upper level controller, and a torque distribution algorithm are designed for the ESC system. The stability judgment controller is designed to generate the desired yaw rate and sideslip angle for vehicle stability, and the control mode, which is normal driving mode or ESC mode, is set according to the driver inputs and measurement signal inputs. The upper level controller consists of a speed tracking controller, a yaw moment controller, and four wheel-slip controllers to calculate the desired value of traction force, the desired value of yaw moment, and the four respective net torque inputs of the four in-wheel motors. The torque distribution algorithm is designed to generate each motor driving torque or regenerative braking torque input for each wheel. An average torque distribution strategy, a tire-dynamic-load-based torque distribution strategy, and a minimum-objective-function-based optimal torque distribution strategy are used separately in the torque distribution algorithm to control the motor driving torque or regenerative braking torque for vehicle stability enhancement. The proposed ESC algorithm was implemented and evaluated in a CarSim vehicle model and a MATLAB/Simulink control model. The three proposed torque distribution strategies can be used to regulate the vehicle to perform the following tasks: "single lane change," " double lane change," and " snake lane change." The simulation studies show that the yaw rate error root mean square [RMS(gamma-gamma(-des))] decreased, on average, by 75 percent using the proposed optimal torque distribution algorithm compared with that without using stability control.
引用
收藏
页码:4726 / 4739
页数:14
相关论文
共 50 条
  • [1] Lateral Stability Control System Based on Cooperative Torque Distribution for a Four In-Wheel Motor Drive Electric Vehicle
    Li, Shoutao
    Zhao, Di
    Zhang, Luyu
    Tian, Yantao
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1119 - 1123
  • [2] Straight running stability control based on optimal torque distribution for a four in-wheel motor drive electric vehicle
    Cao, Yu
    Zhai, Li
    Sun, Tianmin
    Gu, Hongtao
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2825 - 2830
  • [3] Motor Torque Based Vehicle Stability Control for Four-wheel-drive Electric Vehicle
    Li Feiqiang
    Wang Jun
    Liu Zhaodu
    2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 2009, : 1379 - 1384
  • [4] Torque Distribution Control for 8 In-Wheel Motor Drive Vehicle
    Wang Z.
    Guo J.
    Xiong R.
    Wang X.
    Li W.
    Wang, Zhifu (wangzhifu@bit.edu.cn), 1600, Beijing Institute of Technology (26): : 91 - 96
  • [5] A Torque Distribution Approach to Electronic Stability Control for In-wheel Motor Electric Vehicles
    Yin Dejun
    Shan Danfeng
    Chen, Bo-Chiuan
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION (ICASI), 2016,
  • [6] Vehicle Stability Control with Four-Wheel Independent Braking, Drive and Steering on In-Wheel Motor-Driven Electric Vehicles
    Nah, Jaewon
    Yim, Seongjin
    ELECTRONICS, 2020, 9 (11) : 1 - 16
  • [7] Braking Torque Distribution Reconfiguration Strategy of Vehicle With Faults of In-Wheel Motor Drive System
    Xing, Chao
    Zhu, Yueying
    Wang, Jiaying
    Lin, Yier
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14476 - 14485
  • [8] Stability control of in-wheel motor drive vehicle with motor fault
    Wang, Hongbo
    Cui, Wei
    Lin, Shu
    Tan, Dongkui
    Chen, Wuwei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2019, 233 (12) : 3147 - 3164
  • [9] Review on Torque Distribution Scheme of Four-Wheel In-Wheel Motor Electric Vehicle
    He, Shuwen
    Fan, Xiaobin
    Wang, Quanwei
    Chen, Xinbo
    Zhu, Shuaiwei
    MACHINES, 2022, 10 (08)
  • [10] Analysis on cogging torque of driving in-wheel motor for electric vehicle
    Chen, Qiping
    Shu, Hongyu
    Chen, Limin
    Chen, Bo
    Du, Jianhui
    INTERNATIONAL JOURNAL OF ELECTRIC AND HYBRID VEHICLES, 2012, 4 (02) : 148 - 160