Structural Model of the Cytosolic Domain of the Plant Ethylene Receptor 1 (ETR1)

被引:29
|
作者
Mayerhofer, Hubert [1 ]
Panneerselvam, Saravanan [1 ]
Kaljunen, Heidi [1 ]
Tuukkanen, Anne [1 ]
Mertens, Haydyn D. T. [1 ]
Mueller-Dieckmann, Jochen [1 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, European Mol Biol Lab EMBL Hamburg, D-22603 Hamburg, Germany
关键词
Arabidopsis thaliana; Crystal Structure; Histidine Kinase; Plant Hormone; Small Angle X-ray Scattering (SAXS); Ethylene Receptor; Two-component System; RAF-LIKE KINASE; HISTIDINE KINASE; PROTEIN-KINASE; BIOLOGICAL MACROMOLECULES; ENDOPLASMIC-RETICULUM; RESOLUTION STRUCTURE; MUTATIONAL ANALYSIS; SOLUTION SCATTERING; CATALYTIC DOMAIN; ARABIDOPSIS;
D O I
10.1074/jbc.M114.587667
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Signaling of the phytohormone ethylene is initiated by ethylene receptors. Results: We present two crystal structures and a solution model of the entire cytosolic domain of ETR1. Conclusion: This first structural model of the cytosolic domains reveals a flexible receiver domain and asymmetry of the central dimerization domain. Significance: The molecular architecture of the isolated cytosolic domain forms the basis to understand receptor assembly and interaction. Ethylene initiates important aspects of plant growth and development through disulfide-linked receptor dimers located in the endoplasmic reticulum. The receptors feature a small transmembrane, ethylene binding domain followed by a large cytosolic domain, which serves as a scaffold for the assembly of large molecular weight complexes of different ethylene receptors and other cellular participants of the ethylene signaling pathway. Here we report the crystallographic structures of the ethylene receptor 1 (ETR1) catalytic ATP-binding and the ethylene response sensor 1 dimerization histidine phosphotransfer (DHp) domains and the solution structure of the entire cytosolic domain of ETR1, all from Arabidopsis thaliana. The isolated dimeric ethylene response sensor 1 DHp domain is asymmetric, the result of different helical bending angles close to the conserved His residue. The structures of the catalytic ATP-binding, DHp, and receiver domains of ethylene receptors and of a homologous, but dissimilar, GAF domain were refined against experimental small angle x-ray scattering data, leading to a structural model of the entire cytosolic domain of the ethylene receptor 1. The model illustrates that the cytosolic domain is shaped like a dumbbell and that the receiver domain is flexible and assumes a position different from those observed in prokaryotic histidine kinases. Furthermore the cytosolic domain of ETR1 plays a key role, interacting with all other receptors and several participants of the ethylene signaling pathway. Our model, therefore, provides the first step toward a detailed understanding of the molecular mechanics of this important signal transduction process in plants.
引用
收藏
页码:2644 / 2658
页数:15
相关论文
共 50 条
  • [21] Molecular and biochemical analyses of ETR1, an ethylene receptor in Arabidopsis thaliana.
    Hall, AE
    Schaller, GE
    Bleecker, AB
    PLANT PHYSIOLOGY, 1997, 114 (03) : 1487 - 1487
  • [22] Histidine-kinase activity in the ETR1 ethylene receptor of Arabidopsis.
    Schaller, GE
    Coonfield, ML
    PLANT PHYSIOLOGY, 1997, 114 (03) : 1492 - 1492
  • [23] Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis
    Zhao, XC
    Qu, X
    Mathews, DE
    Schaller, GE
    PLANT PHYSIOLOGY, 2002, 130 (04) : 1983 - 1991
  • [24] Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling
    Dong, Chun-Hai
    Rivarola, Maximo
    Resnick, Josephine S.
    Maggin, Benjamin D.
    Chang, Caren
    PLANT JOURNAL, 2008, 53 (02): : 275 - 286
  • [25] Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes
    Liu, Qian
    Wen, Chi-Kuang
    PLANT PHYSIOLOGY, 2012, 158 (03) : 1193 - 1207
  • [26] 13C, 15N and 1H resonance assignments of receiver domain of ethylene receptor ETR1
    Yi-Lin Hung
    Yi-Jan Lin
    Shih-Che Sue
    Biomolecular NMR Assignments, 2015, 9 : 119 - 122
  • [27] Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission
    Wang, WY
    Hall, AE
    O'Malley, R
    Bleecker, AB
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) : 352 - 357
  • [28] 13C, 15N and 1H resonance assignments of receiver domain of ethylene receptor ETR1
    Hung, Yi-Lin
    Lin, Yi-Jan
    Sue, Shih-Che
    BIOMOLECULAR NMR ASSIGNMENTS, 2015, 9 (01) : 119 - 122
  • [29] Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis
    Resnick, Josephine S.
    Rivarola, Maximo
    Chang, Caren
    PLANT JOURNAL, 2008, 56 (03): : 423 - 431
  • [30] The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor
    Hall, AE
    Chen, QHG
    Findell, JL
    Schaller, GE
    Bleecker, AB
    PLANT PHYSIOLOGY, 1999, 121 (01) : 291 - 299