A deep learning method for automatic segmentation of the bony orbit in MRI and CT images

被引:33
作者
Hamwood, Jared [1 ]
Schmutz, Beat [2 ,3 ]
Collins, Michael J. [1 ]
Allenby, Mark C. [4 ]
Alonso-Caneiro, David [1 ]
机构
[1] Queensland Univ Technol QUT, Sch Optometry & Vis Sci, Ctr Vis & Eye Res, Contact Lens & Visual Opt Lab, Kelvin Grove, Qld 4059, Australia
[2] Queensland Univ Technol, Ctr Regenerat Med, Inst Hlth & Biomed Innovat, Kelvin Grove, Qld 4059, Australia
[3] Metro North Hosp & Hlth Serv, Jamieson Trauma Inst, Herston, Qld 4029, Australia
[4] Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, Ctr Biomed Technol, Biofabricat & Tissue Morphol Lab, Herston, Qld 4000, Australia
基金
英国医学研究理事会;
关键词
NEURAL-NETWORKS; COMPUTED-TOMOGRAPHY; RECONSTRUCTION;
D O I
10.1038/s41598-021-93227-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series followed by a graph-search method to generate a boundary for the orbit. When compared to human performance for segmentation of both CT and MRI data, the proposed method achieves high Dice coefficients on both orbit and background, with scores of 0.813 and 0.975 in CT images and 0.930 and 0.995 in MRI images, showing a high degree of agreement with a manual segmentation by a human expert. Given the volumetric characteristics of these imaging modalities and the complexity and time-consuming nature of the segmentation of the orbital region in the human skull, it is often impractical to manually segment these images. Thus, the proposed method provides a valid clinical and research tool that performs similarly to the human observer.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Lung CT Image Segmentation Using Deep Neural Networks [J].
Ait Skourt, Brahim ;
El Hassani, Abdelhamid ;
Majda, Aicha .
PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 :109-113
[2]  
Becker M, 2015, IEEE INT SYM MED MEA, P285, DOI 10.1109/MeMeA.2015.7145214
[3]   Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Enqvist, Olof ;
Ulen, Johannes ;
Poulsen, Mads H. ;
Simonsen, Jane ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 113 :89-95
[4]   Rethinking orbital imaging - Establishing guidelines for interpreting orbital imaging studies and evaluating their predictive value in patients with orbital tumors [J].
Ben Simon, GJ ;
Annunziata, CC ;
Fink, J ;
Villablanca, P ;
McCann, JD ;
Goldberg, RA .
OPHTHALMOLOGY, 2005, 112 (12) :2196-2207
[5]   Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences [J].
Benou, A. ;
Veksler, R. ;
Friedman, A. ;
Raviv, T. Riklin .
MEDICAL IMAGE ANALYSIS, 2017, 42 :145-159
[6]   Learning Implicit Brain MRI Manifolds with Deep Learning [J].
Bermudez, Camilo ;
Plassard, Andrew J. ;
Davis, Larry T. ;
Newton, Allen T. ;
Resnick, Susan M. ;
Landman, Bennett A. .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[7]   Optic disc and optic cup segmentation based on anatomy guided cascade network [J].
Bian, Xuesheng ;
Luo, Xiongbiao ;
Wang, Cheng ;
Liu, Weiquan ;
Lin, Xiuhong .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197
[8]   Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation [J].
Bobo, Meg F. ;
Bao, Shunxing ;
Huo, Yuankai ;
Yao, Yuang ;
Virostko, Jack ;
Plassard, Andrew J. ;
Lyu, Ilwoo ;
Assad, Albert ;
Abramson, Richard G. ;
Hilmes, Melissa A. ;
Landman, Bennett A. .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[9]  
Chang Edward W, 2005, Facial Plast Surg, V21, P207, DOI 10.1055/s-2005-922861
[10]   Super-resolution musculoskeletal MRI using deep learning [J].
Chaudhari, Akshay S. ;
Fang, Zhongnan ;
Kogan, Feliks ;
Wood, Jeff ;
Stevens, Kathryn J. ;
Gibbons, Eric K. ;
Lee, Jin Hyung ;
Gold, Garry E. ;
Hargreaves, Brian A. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) :2139-2154