Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy-Leray inequalities

被引:4
作者
Goldstein, Gisele Ruiz [1 ]
Goldstein, Jerome A. [1 ]
Kombe, Ismail [2 ]
Tellioglu, Reyhan [2 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Istanbul Commerce Univ, Fac Humanities & Social Sci, Dept Math, Istanbul, Turkey
关键词
Critical exponents; Robin boundary conditions; Hardy-Leray type inequalities; Nonexistence; Positive solutions; ELLIPTIC-OPERATORS; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; HEAT-EQUATION; EXISTENCE;
D O I
10.1007/s10231-022-01226-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is twofold. First is the study of the nonexistence of positive solutions of the parabolic problem {partial derivative u/partial derivative t = Delta(p)u + V(x)u(p-1) + lambda u(q) in Omega x (0, T), u(x, 0) = u(0)(x) >= 0 in Omega, vertical bar del u vertical bar(p-2)partial derivative u/partial derivative v = beta vertical bar u vertical bar(p-2)u on partial derivative Omega x (0, T), where Omega is a bounded domain in R-N with smooth boundary partial derivative Omega, Delta(p)u = div(vertical bar del u vertical bar(p-2)del u) is the p-Laplacian of u, V is an element of L-l(oc)1 (Omega), beta is an element of L-loc(1)(partial derivative Omega), lambda is an element of R, the exponents p and q satisfy 1 < p < 2, and q > 0. Then, we present some sharp Hardy and Leray type inequalities with remainder terms that provide us concrete potentials to use in the partial differential equation we are interested in.
引用
收藏
页码:2927 / 2942
页数:16
相关论文
共 25 条
[1]   Some improved Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Colorado, E ;
Peral, I .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) :327-345
[2]   Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions [J].
Abdellaoui, B ;
Colorado, E ;
Peral, I .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (01) :29-54
[3]  
Adams R.A., 1975, Sobolev Spaces
[4]  
Adimurthi, 2002, P ROY SOC EDINB A, V132, P1021
[5]   An improved Hardy-Sobolev inequality and its application [J].
Adimurthi ;
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :489-505
[6]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[7]  
[Anonymous], 1933, Journal de Mathmatiques Pures et Appliques
[8]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[9]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[10]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978