Biocrystallography: past, present, future

被引:15
作者
Giege, Richard [1 ]
Sauter, Claude [1 ]
机构
[1] Univ Strasbourg, CNRS, IBMC, Architecture & Reactivite ARN, F-67084 Strasbourg, France
来源
HFSP JOURNAL | 2010年 / 4卷 / 3-4期
关键词
TRANSFER-RNA-SYNTHETASE; PROTEIN CRYSTAL-GROWTH; X-RAY-ANALYSIS; 3-DIMENSIONAL FOURIER SYNTHESIS; LARGE RIBOSOMAL-SUBUNIT; SYNCHROTRON-RADIATION; MACROMOLECULAR CRYSTALLOGRAPHY; THERMUS-THERMOPHILUS; ANGSTROM-RESOLUTION; CRYSTALLIZATION CONDITIONS;
D O I
10.2976/1.3369281
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The evolution of biocrystallography from the pioneers' time to the present era of global biology is presented in relation to the development of methodological and instrumental advances for molecular sample preparation and structure elucidation over the last 6 decades. The interdisciplinarity of the field that generated cross-fertilization between physics-and biology-focused themes is emphasized. In particular, strategies to circumvent the main bottlenecks of biocrystallography are discussed. They concern (i) the way macromolecular targets are selected, designed, and characterized, (ii) crystallogenesis and how to deal with physical and biological parameters that impact crystallization for growing and optimizing crystals, and (iii) the methods for crystal analysis and 3D structure determination. Milestones that have marked the history of biocrystallography illustrate the discussion. Finally, the future of the field is envisaged. Wide gaps of the structural space need to be filed and membrane proteins as well as intrinsically unstructured proteins still constitute challenging targets. Solving supramolecular assemblies of increasing complexity, developing a "4D biology" for decrypting the kinematic changes in macromolecular structures in action, integrating these structural data in the whole cell organization, and deciphering biomedical implications will represent the new frontiers. [DOI: 10.2976/1.3369281]
引用
收藏
页码:109 / 121
页数:13
相关论文
共 122 条
[1]   Notes of a protein crystallographer: the molecular structure of evolutionary theory [J].
Abad-Zapatero, Cele .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2009, 65 :1341-1349
[2]   Recent developments in phasing and structure refinement for macromolecular crystallography [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Read, Randy J. ;
Richardson, Jane S. ;
Richardson, David C. ;
Terwilliger, Thomas C. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2009, 19 (05) :566-572
[3]   The molecular architecture of cadherins in native epidermal desmosomes [J].
Al-Amoudi, Ashraf ;
Diez, Daniel Castano ;
Betts, Matthew J. ;
Frangakis, Achilleas S. .
NATURE, 2007, 450 (7171) :832-U8
[4]   Coronavirus main proteinase (3CLpro) structure:: Basis for design of anti-SARS drugs [J].
Anand, K ;
Ziebuhr, J ;
Wadhwani, P ;
Mesters, JR ;
Hilgenfeld, R .
SCIENCE, 2003, 300 (5626) :1763-1767
[5]  
ARNOLD E, 2010, CRYSTALLOGRAPHY BIOL
[6]  
Arrahams JP, 2003, METHOD ENZYMOL, V374, P163
[7]   Automation of macromolecular crystallography beamlines [J].
Arzt, S ;
Beteva, A ;
Cipriani, F ;
Delageniere, S ;
Felisaz, F ;
Förstner, G ;
Gordon, E ;
Launer, L ;
Lavault, B ;
Leonard, G ;
Mairs, T ;
McCarthy, A ;
McCarthy, J ;
McSweeney, S ;
Meyer, J ;
Mitchell, E ;
Monaco, S ;
Nurizzo, D ;
Ravelli, R ;
Rey, V ;
Shepard, W ;
Spruce, D ;
Svensson, O ;
Theveneau, P .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2005, 89 (02) :124-152
[8]   Protein crystallization and phase diagrams [J].
Asherie, N .
METHODS, 2004, 34 (03) :266-272
[9]   A 9Å resolution x-ray crystallographic map of the large ribosomal subunit [J].
Ban, N ;
Freeborn, B ;
Nissen, P ;
Penczek, P ;
Grassucci, RA ;
Sweet, R ;
Frank, J ;
Moore, PB ;
Steitz, TA .
CELL, 1998, 93 (07) :1105-1115
[10]   Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Capel, M ;
Moore, PB ;
Steitz, TA .
NATURE, 1999, 400 (6747) :841-847