Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray

被引:54
作者
Coleman, Jonathan R. I. [1 ]
Euesden, Jack [2 ]
Patel, Hamel [2 ,3 ]
Folarin, Amos A. [4 ]
Newhouse, Stephen [4 ]
Breen, Gerome [2 ,5 ]
机构
[1] MRC Social Genet & Dev Psychiat Ctr SGDP, London, England
[2] SGDP, London, England
[3] South London & Maudsley NHS Trust, Natl Inst Hlth Res, Biomed Res Ctr Mental Hlth, Bioinformat Core, London, England
[4] NIHR, BRC MH, Bioinformat Core, London, England
[5] NIHR, BRC MH, Genom & Biomarkers & BioResource Mental & Neurol, London, England
关键词
GWAS; methods; low-coverage microarray; imputation; analysis; ASSOCIATION; MODEL; PLINK;
D O I
10.1093/bfgp/elv037
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The decreasing cost of performing genome-wide association studies has made genomics widely accessible. However, there is a paucity of guidance for best practice in conducting such analyses. For the results of a study to be valid and replicable, multiple biases must be addressed in the course of data preparation and analysis. In addition, standardizing methods across small, independent studies would increase comparability and the potential for effective meta-analysis. This article provides a discussion of important aspects of quality control, imputation and analysis of genome-wide data from a low-coverage microarray, as well as a straight-forward guide to performing a genome-wide association study. A detailed protocol is provided online, with example scripts available at https://github.com/JoniColeman/gwas_scripts.
引用
收藏
页码:298 / 304
页数:7
相关论文
共 50 条
  • [31] Pathway analysis of genome-wide data improves warfarin dose prediction
    Daneshjou, Roxana
    Tatonetti, Nicholas P.
    Karczewski, Konrad J.
    Sagreiya, Hersh
    Bourgeois, Stephane
    Drozda, Katarzyna
    Burmester, James K.
    Tsunoda, Tatsuhiko
    Nakamura, Yusuke
    Kubo, Michiaki
    Tector, Matthew
    Limdi, Nita A.
    Cavallari, Larisa H.
    Perera, Minoli
    Johnson, Julie A.
    Klein, Teri E.
    Altman, Russ B.
    BMC GENOMICS, 2013, 14
  • [32] Genome-Wide Association Studies: Quality Control and Population-Based Measures
    Ziegler, Andreas
    GENETIC EPIDEMIOLOGY, 2009, 33 : S45 - S50
  • [33] Evaluating three strategies of genome-wide association analysis for integrating data from multiple populations
    Zhong, Zhanming
    Li, Guangzhen
    Xu, Zhiting
    Zeng, Haonan
    Teng, Jinyan
    Feng, Xueyan
    Diao, Shuqi
    Gao, Yahui
    Li, Jiaqi
    Zhang, Zhe
    ANIMAL GENETICS, 2024, 55 (02) : 265 - 276
  • [34] Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data
    Munoz, Maria
    Carmen Rodriguez, M.
    Alves, Estefania
    Maria Folch, Josep
    Ibanez-Escriche, Noelia
    Silio, Luis
    Isabel Fernandez, Ana
    BMC GENOMICS, 2013, 14
  • [35] Genome-Wide Population Genetic Analysis of Commercial, Indigenous, Game, and Wild Chickens Using 600K SNP Microarray Data
    Zhang, Jinxin
    Nie, Changsheng
    Li, Xinghua
    Ning, Zhonghua
    Chen, Yu
    Jia, Yaxiong
    Han, Jianlin
    Wang, Liang
    Lv, Xueze
    Yang, Weifang
    Qu, Lujiang
    FRONTIERS IN GENETICS, 2020, 11
  • [36] Accurate genome-wide genotyping from archival tissue to explore the contribution of common genetic variants to pre-cancer outcomes
    Nachmanson, Daniela
    Pagadala, Meghana
    Steward, Joseph
    Cheung, Callie
    Bruce, Lauryn Keeler
    Lee, Nicole Q.
    O'Keefe, Thomas J.
    Lin, Grace Y.
    Hasteh, Farnaz
    Morris, Gerald P.
    Carter, Hannah
    Harismendy, Olivier
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [37] Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
    Romagnoni, Alberto
    Jegou, Simon
    Van Steen, Kristel
    Wainrib, Gilles
    Hugot, Jean-Pierre
    Peyrin-Biroulet, Laurent
    Chamaillard, Mathias
    Colombel, Jean-Frederick
    Cottone, Mario
    D'Amato, Mauro
    D'Inca, Renata
    Halfvarson, Jonas
    Henderson, Paul
    Karban, Amir
    Kennedy, Nicholas A.
    Khan, Mohammed Azam
    Lemann, Marc
    Levine, Arie
    Massey, Dunecan
    Milla, Monica
    Ng, Sok Meng Evelyn
    Oikonomou, Ioannis
    Peeters, Harald
    Proctor, Deborah D.
    Rahier, Jean-Francois
    Rutgeerts, Paul
    Seibold, Frank
    Stronati, Laura
    Taylor, Kirstin M.
    Torkvist, Leif
    Ublick, Kullak
    Van Limbergen, Johan
    Van Gossum, Andre
    Vatn, Morten H.
    Zhang, Hu
    Zhang, Wei
    Andrews, Jane M.
    Bampton, Peter A.
    Barclay, Murray
    Florin, Timothy H.
    Gearry, Richard
    Krishnaprasad, Krupa
    Lawrance, Ian C.
    Mahy, Gillian
    Montgomery, Grant W.
    Radford-Smith, Graham
    Roberts, Rebecca L.
    Simms, Lisa A.
    Hanigan, Katherine
    Croft, Anthony
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] A genome-wide association analysis for carcass and meat quality traits in Duroc pigs
    Gonzalez, R.
    Eusebi, P. G.
    Quintanilla, R.
    Figueiredo, T.
    Manunza, A.
    Noguera, J. L.
    Clop, A.
    Amills, M.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 119 - 120
  • [39] Genome-wide association mapping for heat shock tolerance in Mercenaria mercenaria through SNP microarray analysis
    Huiping Yang
    Denis Grouzdev
    Zhenwei Wang
    Jayme C Yee
    Yangqing Zeng
    Leslie Sturmer
    Bassem Allam
    BMC Genomics, 26 (1)
  • [40] Fast Principal Component Analysis of Large-Scale Genome-Wide Data
    Abraham, Gad
    Inouye, Michael
    PLOS ONE, 2014, 9 (04):