Refined Self-normalized Large Deviations for Independent Random Variables

被引:8
作者
Wang, Qiying [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Self-normalized sum; Student t statistic; Cramer large deviation; CENTRAL-LIMIT-THEOREM; SYMMETRIC STATISTICS; EDGEWORTH EXPANSION; MOMENT CONDITIONS; STUDENTS; DISTRIBUTIONS; CONVERGENCE; SUMS;
D O I
10.1007/s10959-011-0347-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X (1),X (2),......, be independent random variables with EX (i) =0 and write S-n = Sigma(n)(i=1) X-i and V-n(2) = Sigma(n)(i=1) X-i(2). This paper provides new refined results on the Cram,r-type large deviation for the so-called self-normalized sum S (n) /V (n) . The major techniques used to derive these new findings are different from those used previously.
引用
收藏
页码:307 / 329
页数:23
相关论文
共 31 条
[1]   A Berry-Esseen bound for U-statistics in the non-IID case [J].
Alberink, IB .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (02) :519-533
[2]  
Bentkus V, 1997, ANN STAT, V25, P851
[3]   A Berry-Esseen bound for student's statistic in the non-iid case [J].
Bentkus, V ;
Bloznelis, M ;
Gotze, F .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (03) :765-796
[4]  
Bentkus V, 1996, ANN PROBAB, V24, P491
[5]   Limiting distributions of the non-central t-statistic and their applications to the power of t-tests under non-normality [J].
Bentkus, Vidmantas ;
Jing, Bing-Yi ;
Shao, Qi-Man ;
Zhou, Wang .
BERNOULLI, 2007, 13 (02) :346-364
[6]  
Bloznelis M, 2002, THEOR PROBAB APPL+, V47, P300
[7]  
BLOZNELIS M, 1998, PROBABILITY THEORY M, P81
[8]   On bounds for moderate deviations for student's statistic [J].
Chistyakov, GP ;
Götze, F .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2003, 48 (03) :528-535
[9]   Moderate deviations for student's statistic [J].
Chistyakov, GP ;
Götze, F .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (03) :415-428
[10]  
Chistyakov GP, 2004, ANN PROBAB, V32, P28