Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations

被引:50
作者
Billey, SC
Warrington, GS
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
321-hexagon-avoiding; Kazhdan-Lusztig polynomials; Schubert varieties; singular locus; defect graph;
D O I
10.1023/A:1011279130416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In (Deodhar, Geom. Dedicata, 36(1) (1990), 95-119), Deodhar proposes a combinatorial framework for determining the Kazhdan-Lusztig polynomials P in the case where W is any Coxeter group. We explicitly describe the combinatorics in the case where W=G(n) (the symmetric group on n letters) and the permutation w is 321-hexagon-avoiding. Our formula can be expressed in terms of a simple statistic on all subexpressions of any fixed reduced expression for w. As a consequence of our results on Kazhdan-Lusztig polynomials, we show that the Poincare polynomial of the intersection cohomology of the Schubert variety corresponding to w is (1+q)(l(w)) if and only if w is 321-hexagon-avoiding. We also give a sufficient condition for the Schubert variety X to have a small resolution. We conclude with a simple method for completely determining the singular locus of X when w is 321-hexagon-avoiding. The results extend easily to those Weyl groups whose Coxeter graphs have no branch points (B-n, F-4, G(2)).
引用
收藏
页码:111 / 136
页数:26
相关论文
共 50 条
[31]   The equivariant Kazhdan-Lusztig polynomial of a matroid [J].
Gedeon, Katie ;
Proudfoot, Nicholas ;
Young, Benjamin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 150 :267-294
[32]   On the minimal power of q in a Kazhdan-Lusztig polynomial [J].
Gaetz, Christian ;
Gao, Yibo .
ADVANCES IN MATHEMATICS, 2024, 457
[33]   Boolean elements in Kazhdan-Lusztig theory [J].
Marietti, M .
JOURNAL OF ALGEBRA, 2006, 295 (01) :1-26
[34]   A GROBNER BASIS FOR KAZHDAN-LUSZTIG IDEALS [J].
Woo, Alexander ;
Yong, Alexander .
AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (04) :1089-1137
[35]   Formulas for multi-parameter classes of Kazhdan-Lusztig polynomials in S (n) [J].
Caselli, F ;
Marietti, M .
DISCRETE MATHEMATICS, 2006, 306 (8-9) :711-725
[36]   Computing individual Kazhdan-Lusztig basis elements [J].
Scott, Leonard L. ;
Sprowl, Timothy .
JOURNAL OF SYMBOLIC COMPUTATION, 2016, 73 :244-249
[37]   Parabolic Kazhdan-Lusztig polynomials of type-1 for quasi-minuscule quotients [J].
Recupero, Francesco .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 161 :327-358
[38]   AN IDENTITY OF PARABOLIC KAZHDAN-LUSZTIG POLYNOMIALS ARISING FROM SQUARE-IRREDUCIBLE MODULES [J].
Gurevich, Maxim .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (01) :81-93
[39]   Embedded factor patterns for deodhar elements in Kazhdan-Lusztig theory [J].
Billey, Sara C. ;
Jones, Brant C. .
ANNALS OF COMBINATORICS, 2007, 11 (3-4) :285-333
[40]   Kazhdan-Lusztig combinatorics in the moment graph setting [J].
Lanini, Martina .
JOURNAL OF ALGEBRA, 2012, 370 :152-170