Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations

被引:50
作者
Billey, SC
Warrington, GS
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
321-hexagon-avoiding; Kazhdan-Lusztig polynomials; Schubert varieties; singular locus; defect graph;
D O I
10.1023/A:1011279130416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In (Deodhar, Geom. Dedicata, 36(1) (1990), 95-119), Deodhar proposes a combinatorial framework for determining the Kazhdan-Lusztig polynomials P in the case where W is any Coxeter group. We explicitly describe the combinatorics in the case where W=G(n) (the symmetric group on n letters) and the permutation w is 321-hexagon-avoiding. Our formula can be expressed in terms of a simple statistic on all subexpressions of any fixed reduced expression for w. As a consequence of our results on Kazhdan-Lusztig polynomials, we show that the Poincare polynomial of the intersection cohomology of the Schubert variety corresponding to w is (1+q)(l(w)) if and only if w is 321-hexagon-avoiding. We also give a sufficient condition for the Schubert variety X to have a small resolution. We conclude with a simple method for completely determining the singular locus of X when w is 321-hexagon-avoiding. The results extend easily to those Weyl groups whose Coxeter graphs have no branch points (B-n, F-4, G(2)).
引用
收藏
页码:111 / 136
页数:26
相关论文
共 50 条
[21]   Kazhdan-Lusztig polynomials for (B)over-tilde2 [J].
Batistelli, Karina ;
Bingham, Aram ;
Plaza, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (09)
[22]   Inequalities on Bruhat graphs, R- and Kazhdan-Lusztig polynomials [J].
Kobayashi, Masato .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) :470-482
[23]   Leading coefficients of Kazhdan-Lusztig polynomials and fully commutative elements [J].
Green, R. M. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (02) :165-171
[24]   Proof of two conjectures of Brenti and Simion on Kazhdan-Lusztig polynomials [J].
Caselli, F .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 18 (03) :171-187
[25]   Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials [J].
Fabrizio Caselli .
Journal of Algebraic Combinatorics, 2003, 18 :171-187
[26]   Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity [J].
Delanoy, Ewan .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (04) :437-463
[27]   The combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials of lower intervals [J].
Marietti, Mario .
ADVANCES IN MATHEMATICS, 2018, 335 :180-210
[28]   Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity [J].
Ewan Delanoy .
Journal of Algebraic Combinatorics, 2006, 24 :437-463
[29]   Permutations with Kazhdan-Lusztig polynomial Pid,w (q)=1+qh [J].
Woo, Alexander .
ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (02)
[30]   Kazhdan-Lusztig R-polynomials, combinatorial invariance, and hypercube decompositions [J].
Brenti, Francesco ;
Marietti, Mario .
MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (02)