Self-assembly directed synthesis of gold nanostructures

被引:6
|
作者
Kim, Jun Heon
Kim, Kyu Soo
Manesh, Kalayil Manian
Santhosh, Padmanabhan
Gopalan, Anantha Iyengar
Lee, Kwang-Pill [1 ]
机构
[1] Kyungpook Natl Univ, Grad Sch, Dept Chem, Taegu 702701, South Korea
[2] Nano Pract Appl Ctr, Taegu 704230, South Korea
[3] Alagappa Univ, Dept Ind Chem, Karaikkudi 630003, Tamil Nadu, India
关键词
self assembly; gold nanoparticles; nanotubes;
D O I
10.1016/j.colsurfa.2007.04.175
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gold nanocrystals are prepared in an aqueous medium consisting of an inclusion complex formed between beta-cyclodextrin (beta-CD) and 4-amino thiophenol (AT) by the reduction of HAuCl4 using NaBH4. The inclusion complex, beta-CD/AT-IC is expected to play different roles in the preparation of An nanocrystals. beta-CD/AT-IC stabilizes the Au nanocrystals preventing agglomeration and provides self assembly environment for forming nanostructure around Au nanocrystals. Field emission scanning electron micrographs recorded with a lower resolution identify the nanotubular formation. Nanotubular structure is expected from the coalescence of self-assembled beta-CD/AT-IC protected An nanocrystals. Energy dispersed X-ray diffraction patterns of the nanotubes indicate the existence of Au nanocrystals inside the tubes. The molar ratio of the inclusion complex to HAuCl4 influences the size and distribution of Au nanocrystals within the nanotubular channels. Field emission transmission electron micrographs reveal the uniform distribution of An nanocrystals. UV-vis spectra of the Au nanocrystals colloids reveal that the position and intensity of plasmon resonance peak of Au nanocrystals that are dependent on the molar ratio of the inclusion complex. to HAuCl4. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:612 / 616
页数:5
相关论文
共 50 条
  • [41] Directed tissue self-assembly
    Forgacs, Gabor
    Vineyard, George H.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2005, 41 : 2A - 2A
  • [42] Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant
    Lewis, Ryan B.
    Corfdir, Pierre
    Herranz, Jesus
    Kuepers, Hanno
    Jahn, Uwe
    Brandt, Oliver
    Geelhaar, Lutz
    NANO LETTERS, 2017, 17 (07) : 4255 - 4260
  • [43] Directed Self-Assembly of Nanoparticles
    Grzelczak, Marek
    Vermant, Jan
    Furst, Eric M.
    Liz-Marzan, Luis M.
    ACS NANO, 2010, 4 (07) : 3591 - 3605
  • [44] Directed self-assembly of colloids
    Weck, Marcus
    Wang, Yufeng
    Wang, Yu
    Zheng, Xiaolong
    Pine, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [45] A Review on Gold Nanotriangles: Synthesis, Self-Assembly and Their Applications
    Yu, Xiaoxi
    Wang, Zhengkang
    Cui, Handan
    Wu, Xiaofei
    Chai, Wenjing
    Wei, Jinjian
    Chen, Yuqin
    Zhang, Zhide
    MOLECULES, 2022, 27 (24):
  • [46] Convergence of directed and self-assembly
    Ober, Christopher K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [47] Electric Field Directed Self-Assembly of Cuprous Oxide Nanostructures for Photon Sensing
    Sahoo, Sangeeta
    Husale, Sudhir
    Colwill, Bryant
    Lu, Toh-Ming
    Nayak, Saroj
    Ajayan, Pulickel M.
    ACS NANO, 2009, 3 (12) : 3935 - 3944
  • [48] Synthesis, optical properties and self-assembly of gold nanorods
    Martin, Alfonso
    Schopf, Carola
    Pescaglini, Andrea
    O'Riordan, Alan
    Iacopino, Daniela
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2012, 7 (06) : 688 - 702
  • [49] Synthesis of (hemi)carceplex adsorbates for self-assembly on gold
    Huisman, BH
    Rudkevich, DM
    Farrán, A
    Verboom, W
    van Veggel, FCJM
    Reinhoudt, DN
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2000, 2000 (02) : 269 - 274
  • [50] MOLECULAR SELF-ASSEMBLY AND NANOCHEMISTRY - A CHEMICAL STRATEGY FOR THE SYNTHESIS OF NANOSTRUCTURES
    WHITESIDES, GM
    MATHIAS, JP
    SETO, CT
    SCIENCE, 1991, 254 (5036) : 1312 - 1319