Precision omics data integration and analysis with interoperable ontologies and their application for COVID-19 research

被引:11
作者
Wang, Zhigang [1 ]
He, Yongqun [2 ]
机构
[1] Peking Union Med Coll, Beijing, Peoples R China
[2] Univ Michigan, Sch Med, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 国家重点研发计划;
关键词
omics; precision omics; ontology; interoperability; COVID-19; precision medicine; MULTI-OMICS; MINIMUM INFORMATION; IDENTIFY; NETWORKS; MODELS; ACCESS; SHIFT;
D O I
10.1093/bfgp/elab029
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Omics technologies are widely used in biomedical research. Precision medicine focuses on individual-level disease treatment and prevention. Here, we propose the usage of the term `precision omics' to represent the combinatorial strategy that applies omics to translate large-scale molecular omics data for precision disease understanding and accurate disease diagnosis, treatment and prevention. Given the complexity of both omics and precision medicine, precision omics requires standardized representation and integration of heterogeneous data types. Ontology has emerged as an important artificial intelligence component to become critical for standard data and metadata representation, standardization and integration. To support precision omics, we propose a precision omics ontology hypothesis, which hypothesizes that the effectiveness of precision omics is positively correlated with the interoperability of ontologies used for data and knowledge integration. Therefore, to make effective precision omics studies, interoperable ontologies are required to standardize and incorporate heterogeneous data and knowledge in a human- and computer-interpretable manner. Methods for efficient development and application of interoperable ontologies are proposed and illustrated. With the interoperable omics data and knowledge, omics tools such as OmicsViz can also be evolved to process, integrate, visualize and analyze various omics data, leading to the identification of new knowledge and hypotheses of molecular mechanisms underlying the outcomes of diseases such as COVID-19. Given extensive COVID-19 omics research, we propose the strategy of precision omics supported by interoperable ontologies, accompanied with ontology-based semantic reasoning and machine learning, leading to systematic disease mechanism understanding and rational design of precision treatment and prevention.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 96 条
[1]   OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders [J].
Amberger, Joanna S. ;
Bocchini, Carol A. ;
Schiettecatte, Francois ;
Scott, Alan F. ;
Hamosh, Ada .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D789-D798
[2]  
[Anonymous], P 8 INT C BIOM ONT I
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   The Precision Medicine Initiative A New National Effort [J].
Ashley, Euan A. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 313 (21) :2119-2120
[5]   ArrayExpress update - from bulk to single-cell expression data [J].
Athar, Awais ;
Fullgrabe, Anja ;
George, Nancy ;
Iqbal, Haider ;
Huerta, Laura ;
Ali, Ahmed ;
Snow, Catherine ;
Fonseca, Nuno A. ;
Petryszak, Robert ;
Papatheodorou, Irene ;
Sarkans, Ugis ;
Brazma, Alvis .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D711-D715
[6]   Impaired fibrinolysis in critically ill COVID-19 patients [J].
Bachler, Mirjam ;
Boesch, Johannes ;
Stuerzel, Daniel P. ;
Hell, Tobias ;
Giebl, Andreas ;
Stroehle, Mathias ;
Klein, Sebastian J. ;
Schaefer, Volker ;
Lehner, Georg F. ;
Joannidis, Michael ;
Thome, Claudius ;
Fries, Dietmar .
BRITISH JOURNAL OF ANAESTHESIA, 2021, 126 (03) :590-598
[7]   The Ontology for Biomedical Investigations [J].
Bandrowski, Anita ;
Brinkman, Ryan ;
Brochhausen, Mathias ;
Brush, Matthew H. ;
Bug, Bill ;
Chibucos, Marcus C. ;
Clancy, Kevin ;
Courtot, Melanie ;
Derom, Dirk ;
Dumontier, Michel ;
Fan, Liju ;
Fostel, Jennifer ;
Fragoso, Gilberto ;
Gibson, Frank ;
Gonzalez-Beltran, Alejandra ;
Haendel, Melissa A. ;
He, Yongqun ;
Heiskanen, Mervi ;
Hernandez-Boussard, Tina ;
Jensen, Mark ;
Lin, Yu ;
Lister, Allyson L. ;
Lord, Phillip ;
Malone, James ;
Manduchi, Elisabetta ;
McGee, Monnie ;
Morrison, Norman ;
Overton, James A. ;
Parkinson, Helen ;
Peters, Bjoern ;
Rocca-Serra, Philippe ;
Ruttenberg, Alan ;
Sansone, Susanna-Assunta ;
Scheuermann, Richard H. ;
Schober, Daniel ;
Smith, Barry ;
Soldatova, Larisa N. ;
Stoeckert, Christian J., Jr. ;
Taylor, Chris F. ;
Torniai, Carlo ;
Turner, Jessica A. ;
Vita, Randi ;
Whetzel, Patricia L. ;
Zheng, Jie .
PLOS ONE, 2016, 11 (04)
[8]   Kidney disease models: tools to identify mechanisms and potential therapeutic targets [J].
Bao, Yin-Wu ;
Yuan, Yuan ;
Chen, Jiang-Hua ;
Lin, Wei-Qiang .
ZOOLOGICAL RESEARCH, 2018, 39 (02) :72-86
[9]   Multi-omits-based identification of SARS-CoV-2 infection biology and candidate drugs against COVID-19 [J].
Barh, Debmalya ;
Tiwari, Sandeep ;
Weener, Marianna E. ;
Azevedo, Vasco ;
Goes-Neto, Aristoteles ;
Gromiha, M. Michael ;
Ghosh, Preetam .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126
[10]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995