Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis

被引:34
|
作者
Shan, Tizhong [1 ,2 ,3 ]
Xu, Ziye [1 ,2 ,3 ]
Liu, Jiaqi [1 ,2 ,3 ]
Wu, Weiche [1 ,2 ,3 ]
Wang, Yizhen [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Coll Anim Sci, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Minist Educ, Key Lab Mol Anim Nutr, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Lab Feed & Anim Nutr, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lkb1; muscle development; myoblast; STK11; satellite cell; HEMATOPOIETIC STEM-CELLS; GLUCOSE-HOMEOSTASIS; AMPK; KINASE; ACTIVATION; LIVER; CONTRACTION; OXIDATION; KNOCKOUT; PROMOTES;
D O I
10.1002/jcp.25786
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Liver kinase B1 (Lkb1), also named as Serine/Threonine protein kinase 11 (STK11), is a serine/threonine kinase that plays crucial roles in various cellular processes including cell survival, cell division, cellular polarity, cell growth, cell differentiation, and cell metabolism. In metabolic tissues, Lkb1 regulates glucose homeostasis and energy metabolism through phosphorylating and activating the AMPK subfamily proteins. In skeletal muscle, Lkb1 affects muscle development and postnatal growth, lipid and fatty acid oxidation, glucose metabolism, and insulin sensitivity. Recently, the regulatory roles of Lkb1 in regulating division, self-renew, proliferation, and differentiation of skeletal muscle progenitor cells have been reported. In this review, we discuss the roles of Lkb1 in regulating skeletal muscle progenitor cell homeostasis and skeletal muscle development and metabolism.
引用
收藏
页码:2653 / 2656
页数:4
相关论文
共 50 条
  • [31] The metabolic sensor LKB1 regulates ILC3 homeostasis and mitochondrial function
    Fonseca-Pereira, Diogo
    Bae, Sena
    Clay, Slater L.
    Michaud, Monia
    Macdonald, Meghan H.
    Glickman, Jonathan N.
    Garrett, Wendy S.
    CELL REPORTS, 2025, 44 (04):
  • [32] Effect of LKB1 deficiency on mitochondrial content, fibre type and muscle performance in the mouse diaphragm
    Brown, J. D.
    Hancock, C. R.
    Mongillo, A. D.
    Barton, J. Benjamin
    DiGiovanni, R. A.
    Parcell, A. C.
    Winder, W. W.
    Thomson, D. M.
    ACTA PHYSIOLOGICA, 2011, 201 (04) : 457 - 466
  • [33] Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
    Gan, Boyi
    Hu, Jian
    Jiang, Shan
    Liu, Yingchun
    Sahin, Erguen
    Zhuang, Li
    Fletcher-Sananikone, Eliot
    Colla, Simona
    Wang, Y. Alan
    Chin, Lynda
    DePinho, Ronald A.
    NATURE, 2010, 468 (7324) : 701 - U125
  • [34] (Dys)regulation of Protein Metabolism in Skeletal Muscle of Humans With Obesity
    Freitas, Eduardo D. S.
    Katsanos, Christos S.
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [35] Sex-dependent role of Pannexin 1 in regulating skeletal muscle and satellite cell function
    Freeman, Emily
    Langlois, Stephanie
    Scott, Kaylee
    Ravel-Chapuis, Aymeric
    Jasmin, Bernard J.
    Cowan, Kyle N.
    JOURNAL OF CELLULAR PHYSIOLOGY, 2022, 237 (10) : 3944 - 3959
  • [36] LKB1 couples glucose metabolism to insulin secretion in mice
    Accalia Fu
    Karine Robitaille
    Brandon Faubert
    Courtney Reeks
    Xiao-Qing Dai
    Alexandre B. Hardy
    Krishana S. Sankar
    Svetlana Ogrel
    Osama Y. Al-Dirbashi
    Jonathan V. Rocheleau
    Michael B. Wheeler
    Patrick E. MacDonald
    Russell Jones
    Robert A. Screaton
    Diabetologia, 2015, 58 : 1513 - 1522
  • [37] β-catenin-inhibited Sumoylation modification of LKB1 and fatty acid metabolism is critical in renal fibrosis
    Chen, Shuangqin
    Li, Jiemei
    Liang, Ye
    Zhang, Meijia
    Qiu, Ziqi
    Liu, Sirui
    Wang, Haoran
    Zhu, Ye
    Song, Shicong
    Hou, Xiaotao
    Liu, Canzhen
    Wu, Qinyu
    Zhu, Mingsheng
    Shen, Weiwei
    Miao, Jinhua
    Hou, Fan Fan
    Liu, Youhua
    Wang, Cheng
    Zhou, Lili
    CELL DEATH & DISEASE, 2024, 15 (10):
  • [38] Molecular regulation of skeletal muscle tissue formation and development
    Nesvadbova, M.
    Borilova, G.
    VETERINARNI MEDICINA, 2018, 63 (11) : 489 - 499
  • [39] The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
    Gurumurthy, Sushma
    Xie, Stephanie Z.
    Alagesan, Brinda
    Kim, Judith
    Yusuf, Rushdia Z.
    Saez, Borja
    Tzatsos, Alexandros
    Ozsolak, Fatih
    Milos, Patrice
    Ferrari, Francesco
    Park, Peter J.
    Shirihai, Orian S.
    Scadden, David T.
    Bardeesy, Nabeel
    NATURE, 2010, 468 (7324) : 659 - U75
  • [40] Effect of the small GTPase Rheb on the regulation of LKB1 kinase
    Castro, A.
    Armijo, M. E.
    Pincheira, R. J.
    FEBS JOURNAL, 2014, 281 : 459 - 459