COST1 regulates autophagy to control plant drought tolerance

被引:77
作者
Bao, Yan [1 ,2 ,3 ]
Song, Wei-Meng [2 ,4 ]
Wang, Peipei [5 ]
Yu, Xiang [2 ]
Li, Bei [4 ]
Jiang, Chunmei [4 ]
Shiu, Shin-Han [5 ,6 ]
Zhang, Hongxia [2 ,4 ,7 ]
Bassham, Diane C. [1 ]
机构
[1] Ludong Univ, Coll Agr, Yantai 264025, Peoples R China
[2] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA
[3] Chinese Acad Sci, Shanghai Inst Plant Physiol & Ecol, Natl Key Lab Plant Mol Genet, Shanghai 200032, Peoples R China
[4] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[7] Ludong Univ, Key Lab Mol Module Based Breeding High Yield & Ab, Yantai 264025, Shandong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
autophagy; drought; Arabidopsis; COST1; ABSCISIC-ACID BIOSYNTHESIS; OXYGEN SPECIES PRODUCTION; 2C PROTEIN PHOSPHATASES; SIGNAL-TRANSDUCTION; STRESS TOLERANCE; ARABIDOPSIS; GENE; KINASE; ABA; EXPRESSION;
D O I
10.1073/pnas.1918539117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plants balance their competing requirements for growth and stress tolerance via a sophisticated regulatory circuitry that controls responses to the external environments. We have identified a plant-specific gene, COST1 (constitutively stressed 1), that is required for normal plant growth but negatively regulates drought resistance by influencing the autophagy pathway. An Arabidopsis thaliana cost/ mutant has decreased growth and increased drought tolerance, together with constitutive autophagy and increased expression of drought-response genes, while overexpression of COST1 confers drought hypersensitivity and reduced autophagy. The COST1 protein is degraded upon plant dehydration, and this degradation is reduced upon treatment with inhibitors of the 265 proteasome or autophagy pathways. The drought resistance of a cost1 mutant is dependent on an active autophagy pathway, but independent of other known drought signaling pathways, indicating that COST1 acts through regulation of autophagy. In addition, COST1 colocalizes to autophagosomes with the autophagosome marker ATG8e and the autophagy adaptor NBR1, and affects the level of ATG8e protein through physical interaction with ATG8e, indicating a pivotal role in direct regulation of autophagy. We propose a model in which COST1 represses autophagy under optimal conditions, thus allowing plant growth. Under drought, COST1 is degraded, enabling activation of autophagy and suppression of growth to enhance drought tolerance. Our research places COST1 as an important regulator controlling the balance between growth and stress responses via the direct regulation of autophagy.
引用
收藏
页码:7482 / 7493
页数:12
相关论文
共 85 条
  • [11] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [12] Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana
    Chen, Liang
    Liao, Bin
    Qi, Hua
    Xie, Li-Juan
    Huang, Li
    Tan, Wei-Juan
    Zhai, Ning
    Yuan, Li-Bing
    Zhou, Ying
    Yu, Lu-Jun
    Chen, Qin-Fang
    Shu, Wensheng
    Xiao, Shi
    [J]. AUTOPHAGY, 2015, 11 (12) : 2233 - 2246
  • [13] National Science Foundation-Sponsored Workshop report: "The 2010 Project" - Functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them
    Chory, J
    Ecker, JR
    Briggs, S
    Caboche, M
    Coruzzi, GM
    Cook, D
    Dangl, J
    Grant, S
    Guerinot, ML
    Henikoff, S
    Martienssen, R
    Okada, K
    Raikhel, NV
    Somerville, CR
    Weigel, D
    [J]. PLANT PHYSIOLOGY, 2000, 123 (02) : 423 - 425
  • [14] ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci
    Chung, Taijoon
    Phillips, Allison R.
    Vierstra, Richard D.
    [J]. PLANT JOURNAL, 2010, 62 (03) : 483 - 493
  • [15] Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
    Clough, SJ
    Bent, AF
    [J]. PLANT JOURNAL, 1998, 16 (06) : 735 - 743
  • [16] Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein
    Contento, AL
    Xiong, Y
    Bassham, DC
    [J]. PLANT JOURNAL, 2005, 42 (04) : 598 - 608
  • [17] Abscisic Acid: Emergence of a Core Signaling Network
    Cutler, Sean R.
    Rodriguez, Pedro L.
    Finkelstein, Ruth R.
    Abrams, Suzanne R.
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, VOL 61, 2010, 61 : 651 - 679
  • [18] Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants
    De Smet, Riet
    Adams, Keith L.
    Vandepoele, Klaas
    van Montagu, Marc C. E.
    Maere, Steven
    Van de Peer, Yves
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (08) : 2898 - 2903
  • [19] The Pfam protein families database: towards a more sustainable future
    Finn, Robert D.
    Coggill, Penelope
    Eberhardt, Ruth Y.
    Eddy, Sean R.
    Mistry, Jaina
    Mitchell, Alex L.
    Potter, Simon C.
    Punta, Marco
    Qureshi, Matloob
    Sangrador-Vegas, Amaia
    Salazar, Gustavo A.
    Tate, John
    Bateman, Alex
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) : D279 - D285
  • [20] Pfam: the protein families database
    Finn, Robert D.
    Bateman, Alex
    Clements, Jody
    Coggill, Penelope
    Eberhardt, Ruth Y.
    Eddy, Sean R.
    Heger, Andreas
    Hetherington, Kirstie
    Holm, Liisa
    Mistry, Jaina
    Sonnhammer, Erik L. L.
    Tate, John
    Punta, Marco
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) : D222 - D230